Detailed Results of the ATTRibute-CM Phase 3 Study

August 28, 2023
Forward-Looking Statements and Disclaimer

The presentation may contain forward-looking statements. Statements made or presented may include statements that are not historical facts and are considered forward-looking within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Words such as “believe,” “anticipate,” “plan,” “expect,” “intend,” “will,” “may,” “goal,” “potential,” “should,” “could,” “aim,” “estimate,” “predict,” “continue” and similar expressions or the negative of these terms or other comparable terminology are intended to identify forward-looking statements, though not all forward-looking statements necessarily contain these identifying words.

We intend these forward-looking statements to be covered by the safe harbor provisions for forward-looking statements contained in Section 27A of the Securities Act and Section 21E of the Exchange Act. These forward-looking statements, including statements relating to the clinical, therapeutic and market potential of our programs and product candidates, including our clinical development program for acoramidis for patients with transthyretin amyloid cardiomyopathy, the timing and success of our clinical development programs, the benefits and potentials of our product candidates, the progress of our ongoing and planned clinical trials of acoramidis for patients with transthyretin amyloid cardiomyopathy, including our plans to file a new NDA with the FDA by end of year 2023, our planned interactions with regulatory authorities, the availability of data from our clinical trials of acoramidis, the events, the expectations and the plans described in the "Next steps" of the presentation and the timing of these events, reflect our current views about our plans, intentions, expectations and strategies, which are based on the information currently available to us and on assumptions we have made. Such statements reflect the current views of the Company with respect to future events and are subject to known and unknown risks, including business, regulatory, economic and competitive risks, uncertainties, contingencies and assumptions about the Company, including, without limitation, risks inherent in developing therapeutic products, and those risks and uncertainties described under the heading “Risk Factors” in the Company’s most recent Annual Report on Form 10-K filed with the U.S. Securities and Exchange Commission (“SEC”) and in subsequent filings made by the Company with the SEC, which are available on the SEC’s website at www.sec.gov. In light of these risks and uncertainties, many of which are beyond the Company’s control, the events or circumstances referred to in the forward-looking statements, express or implied, may not occur. The actual results may vary from the anticipated results and the variations may be material. You are cautioned not to place undue reliance on these forward-looking statements, which speak to the Company’s current beliefs and expectations only as of the date of the presentation. Except as required by law, the Company disclaims any intention or responsibility for updating or revising any forward-looking statements made or presented in the event of new information, future developments or otherwise. No representation is made as to the safety or effectiveness of the product candidates for the therapeutic use for which such product candidates are being studied.

Certain information communicated may relate to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company’s own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of the presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, certain information to be communicated at the presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, such research has not been verified by any independent source.

Such information is provided as of the presentation and is subject to change without notice. The Company has not verified, and will not verify, any part of this presentation, and the Company makes no representation or warranty, express or implied, as to the accuracy or completeness of the information to be communicated at the presentation or as to the existence, substance or materiality of any information omitted from the presentation at the presentation. The Company disclaims any and all liability for any loss or damage (whether foreseeable or not) suffered or incurred by any person or entity as a result of anything contained or omitted from this document or the related presentation and such liability is expressly disclaimed.
Discussion topics

1. Molecular hypothesis
2. ATTRibute-CM Phase 3 results
3. Context for clinical findings
4. Next steps
5. Q&A session
Acoramidis was designed to achieve maximal stabilization and preserve native TTR

Design Objectives

1. Maximize TTR stabilization/minimize toxic monomer

2. Preserve circulating native TTR

Rationale

- Strong genotype/phenotype correlation between TTR instability and disease severity\(^1\)
- Dose-dependent improvements in both TTR stabilization and clinical outcomes demonstrated by tafamidis in ATTR-CM\(^2\)
- Extent of TTR stabilization or knockdown associated with degree of clinical benefit in ATTR-PN\(^3-6\)
- TTR has been highly conserved throughout evolution\(^7\)
- TTR is an abundant plasma protein with relatively rapid turnover requiring sustained metabolic energy expenditure

We plan to enter the ATTR-CM market with acoramidis, a next generation, more potent TTR stabilizer

TTR = Transthyretin; ATTR-CM = TTR amyloid cardiomyopathy.

Acoramidis is a next generation stabilizer that employs multiple strategies to maximize potency

Native TTR circulates in blood as a tetramer

Dissociation into monomers initiates pathogenesis

Monomers aggregate, causing disease

~130 known destabilizing mutations

Protective T119M mutation

Acoramidis was designed to mimic protective T119M mutation. Acoramidis sees more target (superior free fraction), binds more target (superior kd2), and glues the target together stronger (enthalpic binding mode).\(^1,2\) Phase 3 results confirm differential stabilization via effects on serum TTR.

Acoramidis is an investigational molecule. The safety and efficacy have not been established by regulatory authorities.

Data supporting more potent TTR stabilization

Superior Binding to TTR in vitro\(^1\)
facilitated by enthalpic interactions

Near-Complete TTR Stabilization\(^2\)
at target trough clinical concentrations

Rapid, durable increases in serum TTR
an in vivo marker of native tetramer stability

Note: Direct cross-study comparisons may suggest misleading similarities or differences. The values shown are directional and do not report robust comparative analysis.
Acoramidis demonstrated pan-variant TTR stabilization to a greater extent than tafamidis

Source: Ji A. X. et al., ESC 2023: “Acoramidis Produces Near-Complete TTR Stabilization in Blood Samples from Patients with Variant Transthyretin Amyloidosis that is Greater than that Achieved with Tafamidis”

Note: SD shown for measurements with two or more samples
Exploratory post hoc analysis: serum TTR levels

Mean change from baseline in serum TTR at Month 30 in mITT population.

1Mean change from baseline in serum TTR at Month 30 in mITT population. 2Mean exposure on tafamidis = 11 months in mITT population.
Discussion topics

1. Molecular hypothesis
2. ATTRibute-CM Phase 3 results
3. Context for clinical findings
4. Next steps
5. Q&A session
Efficacy and Safety of Acoramidis in Transthyretin Amyloid Cardiomyopathy

Results of the ATTRibute-CM Trial

Julian D. Gillmore,1 Daniel P. Judge,2 Francesco Cappelli,3 Marianna Fontana,1 Pablo Garcia-Pavia,4,5,6 Simon Gibbs,7 Martha Grogan,8 Mazen Hanna,9 James Hoffman,10 Ahmad Masri,11 Mathew S. Maurer,12 Jose Nativi-Nicolau,13 Laura Obici,14 Frank Rockhold,15, 16 Keyur B. Shah,17 Prem Soman,18 Jyotsna Garg,15 Karen Chiswell,15 Haolin Xu,15 Xiaofan Cao,19 Ted Lystig,19 Uma Sinha,19 and Jonathan C. Fox19

1National Amyloidosis Centre, Division of Medicine, University College London, Royal Free Hospital, London, UK; 2 The Medical University of South Carolina, Charleston, SC, USA; 3Tuscan Regional Amyloidosis Centre, Careggi University Hospital, Florence, Italy; 4Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta der Hierro Majadahonda, CIBERCV, Manuel de Falla 2, 28222 Madrid, Spain; 5Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain; 6European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart; 7The Victorian and Tasmanian Amyloidosis Service, Department of Haematology, Monash University Eastern health Clinical School, Box Hill, Victoria, Australia; 8Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA; 9Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA; 10Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; 11Cardiac Amyloidosis Program, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; 12Cardiac Amyloidosis Program, Division of Cardiology, Columbia College of Physicians and Surgeons, New York NY, USA; 13Amyloidosis Program, Department of Transplant, Mayo Clinic, Jacksonville, FL, USA; 14Amyloidosis Research and Treatment Center, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy; 15Duke Clinical Research Institute, Durham, NC, USA; 16Duke University Medical Center, Durham, NC, USA; 17The Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA; 18Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; 19BridgeBio Pharma, San Francisco, CA, USA
ATTRibute-CM study design1,2

Key eligibility criteria

- Subjects with diagnosed ATTR-CM (WT or variant)
- NYHA Class I-III
- ATTR-positive biopsy or 99mTc scan
- Light chain amyloidosis excluded if diagnosis by 99mTc

Screening and randomization

- 800 mg acoramidis HCl twice daily
 - N = 421
 - Efficacy assessment included 611 participants in the pre-specified mITT population (eGFR ≥30 mL/min/1.73 m\(^2\))

- Placebo twice daily
 - N = 211
 - Tafamidis usage allowed after Month 12

30-month primary endpoint3:
Hierarchical analysis consisting of all-cause mortality, cumulative frequency of CVH, change from baseline in NT-proBNP, and change from baseline in 6MWD

Open-label extension

800 mg acoramidis HCl twice daily

Acoramidis is an investigational molecule. The safety and efficacy have not been fully evaluated by regulatory authorities.

6MWD = Six-minute walk distance; NYHA = New York Heart Association; 99mTc = Technetium labeled pyrophosphate (PYP) or bisphosphonate (e.g., DPD); mITT = Modified intent-to-treat. eGFR = Estimated glomerular filtration rate.

1ClinicalTrials.gov identifier: NCT03860935. 2Gillmore JD et al. Circulation. 2019;140(1):14214. Oral poster presented at AHA. 3Primary analysis assessed using the Finkelstein-Schoenfeld method.
ATTRibute-CM: Baseline Demographic Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Acoramidis (N=421)</th>
<th>Placebo (N=211)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>77.4 (6.5)</td>
<td>77.1 (6.8)</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>384 (91.2)</td>
<td>186 (88.2)</td>
</tr>
<tr>
<td>ATTRwt-CM, n(%)</td>
<td>380 (90.3)</td>
<td>191 (90.5)</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL), median (IQR)</td>
<td>2326 (1332, 4019)</td>
<td>2306 (1128, 3754)</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73m2), mean (SD)</td>
<td>60.9 (18.2)</td>
<td>61.0 (18.7)</td>
</tr>
<tr>
<td>TTR (mg/dL), mean (SD)</td>
<td>23.2 (5.6)</td>
<td>23.6 (6.1)</td>
</tr>
<tr>
<td>KCCQ-OS, mean (SD)</td>
<td>71.5 (19.4)</td>
<td>70.3 (20.5)</td>
</tr>
<tr>
<td>6MWD (m), mean (SD)</td>
<td>361.2 (103.7)</td>
<td>348.4 (93.6)</td>
</tr>
<tr>
<td>Concomitant tafamidis use, n (%)</td>
<td>61 (14.5)</td>
<td>46 (21.8)</td>
</tr>
</tbody>
</table>

ATTRwt-CM = transthyretin amyloidosis wild-type cardiomyopathy; NT-proBNP = N-terminal pro-B-type natriuretic peptide; TTR = transthyretin; KCCQ-OS = Kansas City Cardiomyopathy Questionnaire Overall Summary Score.

*Tafamidis usage allowed after Month 12.
ATTRibute-CM: Primary Outcome Overall and by Subgroups

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. (%) of Patients</th>
<th>Win Ratio</th>
<th>Win Ratio [95% CI]</th>
<th>FS test p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>611(100.0)</td>
<td></td>
<td>1.772 [1.417, 2.217]</td>
<td><0.0001</td>
</tr>
<tr>
<td>ATTR-CM Genotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTRn-CM</td>
<td>59(9.7)</td>
<td></td>
<td>2.529 [1.303, 4.911]</td>
<td>0.0061</td>
</tr>
<tr>
<td>ATTRwt-CM</td>
<td>552(90.3)</td>
<td></td>
<td>1.756 [1.396, 2.208]</td>
<td><0.0001</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><= 3000</td>
<td>401(65.6)</td>
<td></td>
<td>1.787 [1.373, 2.325]</td>
<td><0.0001</td>
</tr>
<tr>
<td>> 3000</td>
<td>210(34.4)</td>
<td></td>
<td>1.678 [1.160, 2.426]</td>
<td>0.0060</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73m2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 45</td>
<td>94(15.4)</td>
<td></td>
<td>1.410 [0.849, 2.341]</td>
<td>0.1841</td>
</tr>
<tr>
<td>>= 45</td>
<td>517(84.6)</td>
<td></td>
<td>1.797 [1.452, 2.226]</td>
<td><0.0001</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 78</td>
<td>299(48.9)</td>
<td></td>
<td>2.052 [1.489, 2.829]</td>
<td><0.0001</td>
</tr>
<tr>
<td>>= 78</td>
<td>312(51.1)</td>
<td></td>
<td>1.499 [1.098, 2.045]</td>
<td>0.0107</td>
</tr>
<tr>
<td>NYHA Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I, II</td>
<td>512(83.8)</td>
<td></td>
<td>1.892 [1.479, 2.419]</td>
<td><0.0001</td>
</tr>
<tr>
<td>III</td>
<td>99 (16.2)</td>
<td></td>
<td>1.150 [0.652, 2.030]</td>
<td>0.6292</td>
</tr>
</tbody>
</table>

FS = Finkelstein-Schoenfeld; CI = Confidence interval.
ATTRibute-CM: All-Cause Mortality

ARR = Absolute risk reduction; RRR = Relative risk reduction.
All-cause mortality includes heart transplant, implantation of cardiac mechanical assist device, and all-cause death.
ATTRibute-CM: Cardiovascular-Related Mortality

CV-related = Cardiovascular-related.

1Heart transplant and implantation of cardiac mechanical assistance device (CMAD) were treated as death for this analysis. N = 1 heart transplant & N = 1 CMAD implantation in placebo group.

2CV-related mortality includes all adjudicated CV-related and undetermined cause of death.

CV-related mortality at Month 30:

- Acoramidis (N=409): 14.9%
- Placebo (N=202): 21.3%

ARR = 6.4%
RRR = 30%
ATTRibute-CM: Frequency of CVH; p<0.0001 on overall analysis

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. of Patients</th>
<th>Relative Risk [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>611(100.0)</td>
<td>0.496 [0.355, 0.695]</td>
</tr>
<tr>
<td>ATTR-CM Genotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTRm-CM</td>
<td>59(9.7)</td>
<td>0.377 [0.139, 1.027]</td>
</tr>
<tr>
<td>ATTRwt-CM</td>
<td>552(90.3)</td>
<td>0.514 [0.360, 0.734]</td>
</tr>
<tr>
<td>NT-proBNP (pg/mL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><= 3000</td>
<td>401(65.6)</td>
<td>0.456 [0.299, 0.695]</td>
</tr>
<tr>
<td>> 3000</td>
<td>210(34.4)</td>
<td>0.576 [0.330, 1.003]</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73m2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 45</td>
<td>94(15.4)</td>
<td>0.594 [0.250, 1.415]</td>
</tr>
<tr>
<td>>= 45</td>
<td>517(84.6)</td>
<td>0.481 [0.334, 0.692]</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 78</td>
<td>299(48.9)</td>
<td>0.437 [0.275, 0.696]</td>
</tr>
<tr>
<td>>= 78</td>
<td>312(51.1)</td>
<td>0.576 [0.353, 0.940]</td>
</tr>
<tr>
<td>NYHHA Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I, II</td>
<td>512(83.8)</td>
<td>0.447 [0.310, 0.645]</td>
</tr>
<tr>
<td>III</td>
<td>99(16.2)</td>
<td>0.721 [0.313, 1.660]</td>
</tr>
</tbody>
</table>

Negative binomial regression with treatment group, stratification factors, and subgroup of interest was used to analyze the cumulative frequency of adjudicated CV-related hospitalization.
ATTRibute-CM: Change from Baseline in NT-proBNP & 6MWD

Change from Baseline in NT-proBNP

- Analyzed using mixed effects model with repeated measures.
- Missing measurements due to early discontinuation imputed using the Jump to Reference method.
- Missing measurements due to death performed by sampling with replacement from bottom 5% of observed values.

Change from Baseline in 6MWD

- Analyzed using mixed effects model with repeated measures.
- Missing measurements due to early discontinuation imputed using the Jump to Reference method.
- Missing measurements due to death performed by sampling with replacement from bottom 5% of observed values.
ATTRibute-CM: Change from Baseline in KCCQ-OS & Serum TTR

Change from Baseline in KCCQ-OS

Change from Baseline in Serum TTR

1 Analyzed using mixed effects model with repeated measures. Missing measurements due to early discontinuation imputed using the Jump to Reference method. Missing measurements due to death performed by sampling with replacement from bottom 5% of observed values. 2 Observed measurements without any imputation. No adjustment was made for early discontinuation for any reason, including death.
ATTRibute-CM: Improvements in Disease Measures

Improvement from baseline in NT-proBNP

<table>
<thead>
<tr>
<th>Group</th>
<th>% of subjects improving from baseline at M30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoramidis</td>
<td>45%</td>
</tr>
<tr>
<td>Placebo</td>
<td>9%</td>
</tr>
</tbody>
</table>

Acoramidis (N=280) vs Placebo (N=133)

Improvement from baseline in 6MWD

<table>
<thead>
<tr>
<th>Group</th>
<th>% of subjects improving from baseline at M30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoramidis</td>
<td>40%</td>
</tr>
<tr>
<td>Placebo</td>
<td>22%</td>
</tr>
</tbody>
</table>

Acoramidis (N=268) vs Placebo (N=121)

mITT population. Improvement is defined as <0 pg/mL change from baseline to month 30 for NT-proBNP; >0 meter change from baseline to month 30 for 6MWD. In both cases, among subjects with both baseline and month 30 values.
ATTRibute-CM: Patient Safety

<table>
<thead>
<tr>
<th>Subjects with one or more event(s)</th>
<th>Acoramidis N=421</th>
<th>Placebo N=211</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any treatment-emergent adverse events (TEAEs)</td>
<td>413 (98.1%)</td>
<td>206 (97.6%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEAE with fatal outcome</td>
<td>60 (14.3%)</td>
<td>36 (17.1%)</td>
</tr>
<tr>
<td>TEAE leading to hospitalization</td>
<td>212 (50.4%)</td>
<td>128 (60.7%)</td>
</tr>
<tr>
<td>TEAE leading to study drug discontinuation</td>
<td>39 (9.3%)</td>
<td>18 (8.5%)</td>
</tr>
<tr>
<td>Any treatment-emergent serious adverse events (SAEs)</td>
<td>230 (54.6%)</td>
<td>137 (64.9%)</td>
</tr>
<tr>
<td>Treatment-emergent SAEs leading to study drug discontinuation</td>
<td>21 (5.0%)</td>
<td>15 (7.1%)</td>
</tr>
<tr>
<td>Severe TEAEs(^1)</td>
<td>157 (37.3%)</td>
<td>96 (45.5%)</td>
</tr>
</tbody>
</table>

\(^1\)Severity as assessed by the investigator.

Acoramidis was generally well-tolerated with no findings of potential clinical concern
Conclusions

- Primary endpoint analysis (Finkelstein-Schoenfeld hierarchy of ACM, CVH, NT-proBNP, 6MWD) highly statistically significant
 - Win ratio 1.8; p<0.0001; 58% of win ratio ties broken by ACM + CVH
- Consistent treatment effect across secondary endpoints
 - Better preservation of functional capacity (6MWD) and QoL (KCCQ-OS)
 - Reduced progressive increase in NT-proBNP; 45% of patients improved
- 81% survival rate on acoramidis approaches survival rate in age-matched US database (~85%)\(^1,2\)
- 0.29 mean annual CVH frequency on acoramidis approaches annual hospitalization rate observed in broader US Medicare population (~0.26)\(^3\)
- Reassuring safety profile

\(^1\)ssa.gov. \(^2\)Miller et al., Am J Card 2021; 148:146-150. \(^3\)US Department of Health & Human Services, Jan 2018.
Discussion topics

1. Molecular hypothesis
2. ATTRibute-CM Phase 3 results
3. Context for clinical findings
4. Next steps
5. Q&A session
Surviving more and going to the hospital less

A. Dramatic risk reduction
B. Biomarker & functional improvement
C. Connecting the dots between extent of TTR stabilization and outcomes
Observed effect of acoramidis approaches rates of mortality and hospitalization in similarly aged US cohorts

<table>
<thead>
<tr>
<th>Rate of Survival at Month 30</th>
<th>Mean Annual Hospitalization Frequency5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural History1</td>
<td>Acoramidis (ATTRibute-CM)</td>
</tr>
<tr>
<td>85%</td>
<td>81%</td>
</tr>
</tbody>
</table>

Note: Direct cross-study comparisons may suggest misleading similarities or differences. The values shown are directional and do not report robust comparative analysis.

5Natural history reflects US Medicare non-neonatal, non-maternal inpatient stays. ATTRibute-CM and ATTR-ACT data reflect cardiovascular hospitalizations.
>40% of participants experienced improvement in laboratory and functional measures of disease progression on acoramidis.

NT-proBNP (pg/mL)

<table>
<thead>
<tr>
<th>ATTRibute-CM</th>
<th>Acoramidis</th>
<th>% improvement from baseline at M30</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=409</td>
<td>45%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTR-ACT</th>
<th>Tafamidis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N=264</td>
<td>24%</td>
<td></td>
</tr>
</tbody>
</table>

6MWT (m)

<table>
<thead>
<tr>
<th>ATTRibute-CM</th>
<th>Acoramidis</th>
<th>% improvement from baseline at M30</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=409</td>
<td>40%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTR-ACT</th>
<th>Tafamidis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N=264</td>
<td>19%</td>
<td></td>
</tr>
</tbody>
</table>

Note: Direct cross-study comparisons may suggest misleading similarities or differences. The values shown are directional and do not report robust comparative analysis. N represents number of patients at baseline. ATTRibute-CM data reflects mITT population. Improvement is defined as <0 pg/mL change from baseline to month 30 for NT-proBNP; >0 meter change from baseline to month 30 for 6MWD. In both cases, among subjects with both baseline and month 30 values.

Molecular hypothesis for a second generation TTR stabilizer translated to observed benefit on measures of disease progression

1. Acoramidis was designed to mimic the protective T119M mutation

2. % Increase in Serum TTR at M12

 - Tafamidis 20 mg: 22%
 - Tafamidis 80 mg: 30%
 - Acoramidis HCl 800 mg: 39%

3. Near-complete TTR stabilization results in higher serum TTR levels on acoramidis

4. Higher serum TTR concentrations correlated with benefit on morbidity and quality of life with high statistical significance (correlation coefficient p<0.0001)

 - CVH Rate
 - NT-proBNP
 - KCCQ

1Estimated from Damy, T., et al., Eur J Heart Fail. 2021;23(2):277-285. 2Mean change from baseline in serum TTR at Month 30 in mITT population. 3Mean exposure on tafamidis = 11 months in mITT population.
Discussion topics

1. Molecular hypothesis
2. ATTRibute-CM Phase 3 results
3. Context for clinical findings
4. Next steps
5. Q&A session
First regulatory submission planned for year-end 2023

- Present ATTRibute-CM Primary Results
 European Society of Cardiology 2023
 August 27th, 2023

- File New Drug Application (NDA) with FDA
 End of 2023

- Submit additional regulatory filings (EMA & others)
 2024

- Execute lifecycle management
 Initiate primary prevention study (ACT-EARLY)
 2024
Ongoing and planned studies of acoramidis aim to expand evidence base and addressable patient population.

Today
- **ATTR-CM**
 - WT and hereditary
 - Primary results

2H 2023
- **ATTR-CM**
 - WT and hereditary
 - Continued analysis of Ph. 3 data
 - In vitro TTR stabilization
 - Acoramidis vs. Tafamidis
 - Acoramidis Ph. 2 OLE
 - 4+ years safety and efficacy data

2024+
- **ATTR-CM**
 - WT and hereditary
 - Open-label extension
 - Expanded safety and efficacy

Multi-prong evidence generation plan in progress to strengthen acoramidis’ differentiated clinical profile

- actearly
 - ATTR-CM
 - Hereditary
 - Prevention study
 - Additional real-world evidence generation
 - Imaging Study
 - Longitudinal CMR monitoring

CMR = Cardiac magnetic resonance.
Discussion topics

1. Molecular hypothesis on stabilization
2. ATTRibute-CM Phase 3 results
3. Context for clinical findings
4. Next steps
5. Q&A session