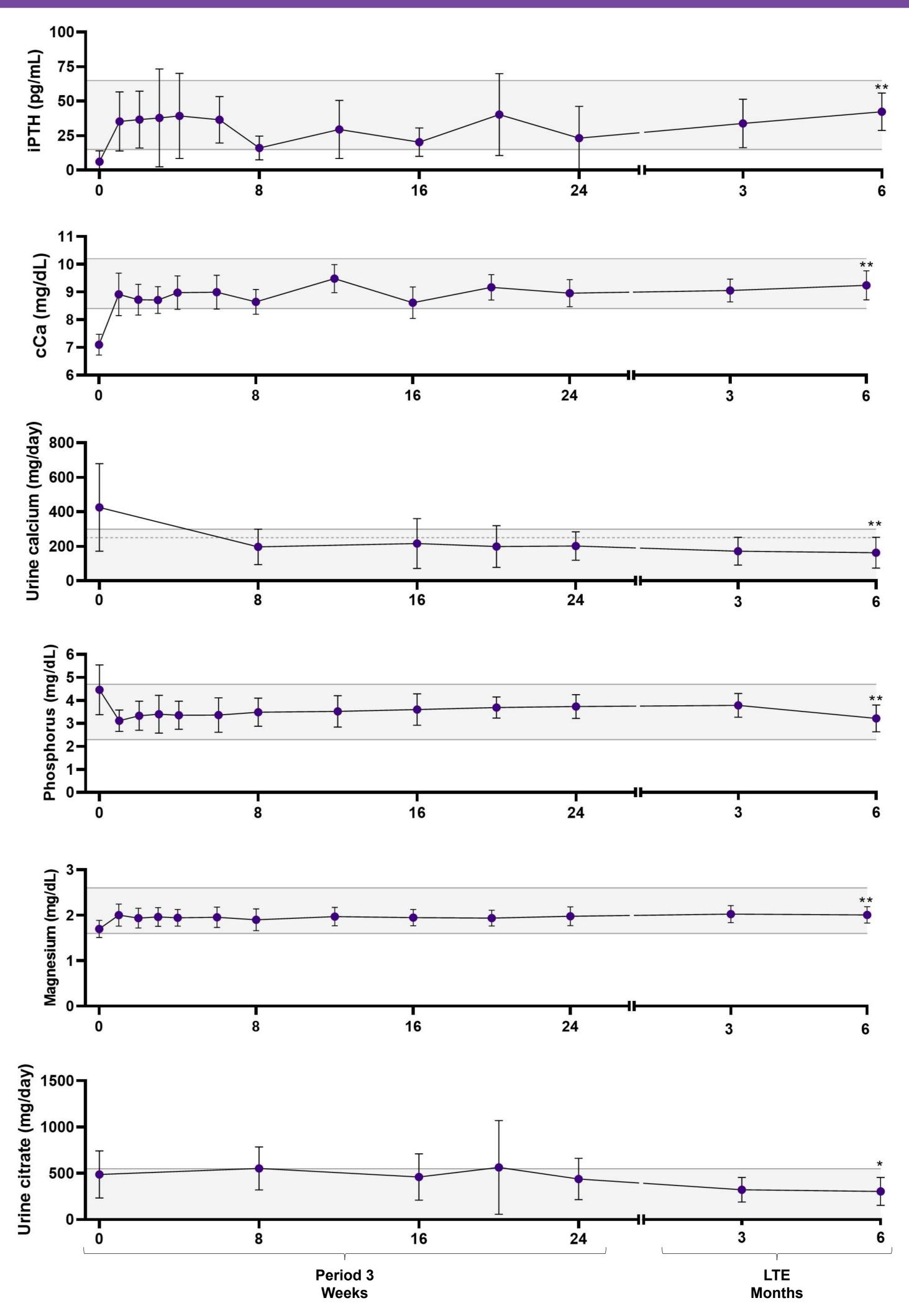
Encaleret (CLTX-305) Normalized Mineral Homeostasis Parameters in Patients with Autosomal Dominant Hypocalcemia Type 1: Results over 12 months in a Phase 2 Study (NCT04581629)

¹RI Gafni, ¹IR Hartley, ¹KL Roszko, ²EF Nemeth, ¹KA Pozo, ¹WP Boykin, ³AS Mathew, ³MS Roberts, ³SH Adler, ¹MT Collins



1. NIDCR, NIH, Bethesda, MD, USA, 20892; 2. MetisMedica, Toronto, ON, Canada, M4V 2M7; 3. BridgeBio Pharma, Inc. affiliate Calcilytix Therapeutics, Inc, San Francisco, CA, USA, 94158

Background

- Autosomal dominant hypocalcemia type 1 (ADH1) is a rare form of hypoparathyroidism caused by gain-of-function pathogenic variants in the calciumsensing receptor gene (CASR).¹
- The estimated U.S. prevalence of genetic variants is 3.9/100,000 with > 100 unique gain-of-function CASR variants reported.¹⁻²
- Biochemical features of ADH1 include low parathyroid hormone (PTH), hypocalcemia, hypercalciuria, hyperphosphatemia, and hypomagnesemia.³
- Conventional therapy for ADH1 (calcium and active vitamin D) can lead to or exacerbate hypercalciuria, increasing risk of nephrolithiasis, nephrocalcinosis, and renal insufficiency.
- Calcilytics (investigational negative allosteric modulators of the CaSR) shift the concentration-response relationship between extracellular calcium and the cellular response of cells expressing CaSR to the right (Figure 1).³

Mineral Parameters

- Encaleret, an investigational oral calcilytic, has the potential to restore normal mineral homeostasis in ADH1 without calcium and active vitamin D supplementation.
- This Phase 2b open-label study of encaleret in ADH1 was comprised of 3-periods followed by a long-term extension (LTE).

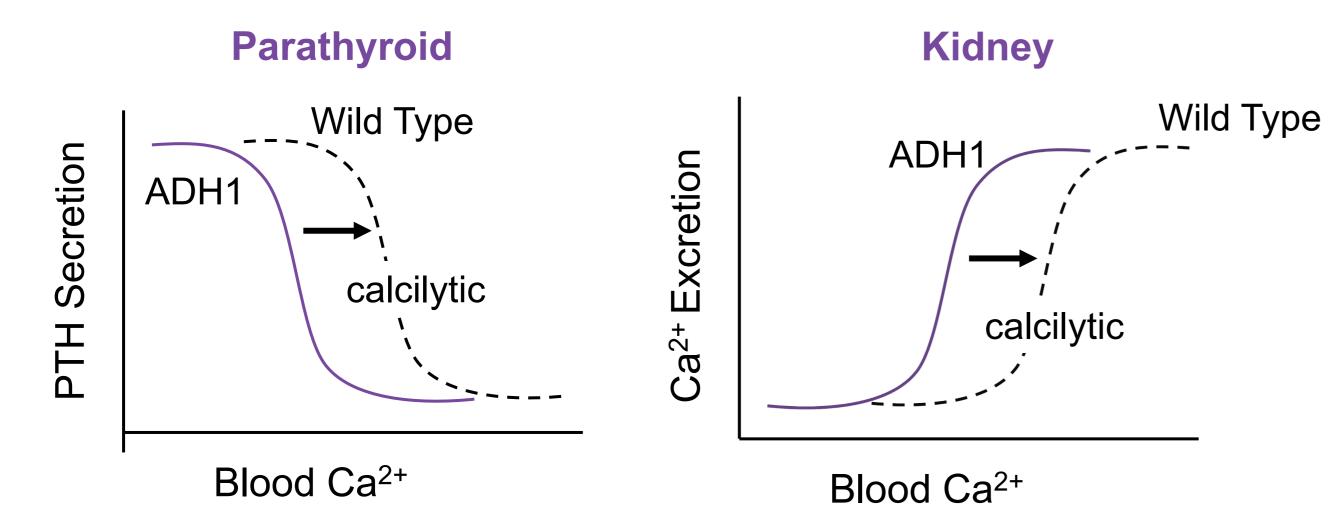


Figure 1: The effects of calcilytics on parathyroid and renal physiology

Calcilytics decrease the sensitivity of CaSRs to extracellular calcium, resulting in increased PTH secretion (left) and decreased calcium excretion (right). [Figure adapted from Tfelt-Hansen, 2002].⁴

Phase 2b Study Design

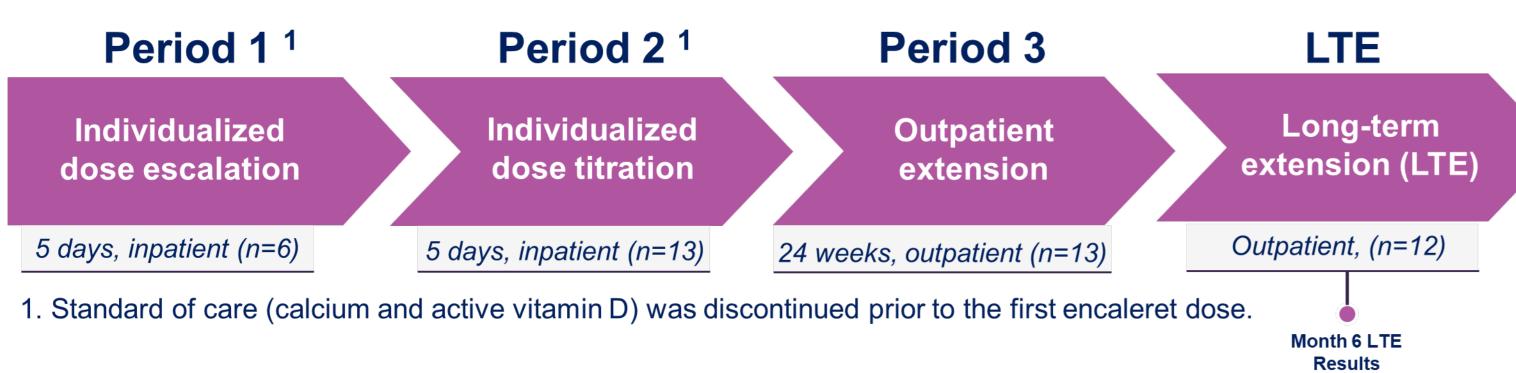


Figure 2: Study Schema.

Subject Characteristics

Table 1: Baseline Characteristics

Characteristic	N=13	Normal Range
Age, mean (range)	39 (22-60)	
Female, n (%)	8 (62%)	
Nephrocalcinosis/Nephrolithiasis, n (%)	10 (77%)	
eGFR (mL/min/1.73 m ²)	84 ± 25	> 60
Albumin corrected calcium (mg/dL)*	7.1 ± 0.4	8.4 - 10.2
Intact PTH (pg/mL)*	6.3 ± 7.8	15 – 65
Phosphate (mg/dL)*	4.5 ± 1.1	2.3 – 4.7
Magnesium (mg/dL)*	1.7 ± 0.2	1.6 – 2.6
24h Urine Calcium (mg/24h)	384 ± 221	< 250 – 300
Supplement Doses		
Elemental Calcium (mg/day) [mean (range)]	2120 (750-4800)	

Calcitriol (µg/day) [mean (range)] 0.7 (0.2-2.0)

*Measurements taken pre-dose Day 1, Period 2. Data reported as (mean±SD). CASR variants (n): C131Y (2), P221L (2), E604K (1), A840V (3), F788C (1), T151M (1), Q245R (1), I692F (1), E228K (1) Figure 3: Encaleret restored mineral homeostasis in patients with ADH1, which was maintained over 12 months. Data reported as mean+SD. Gray shading = normal range. Solid line for urine calcium = upper limit for men, dashed line = upper limit for women. Values below limit of assay quantitation recorded as "0". The measures shown for weeks 0, 8, 16, and 24 are pre-AM encaleret dose. ** p-value < 0.01, * p-value < 0.05 LTE Month 6 mean compared to Baseline.

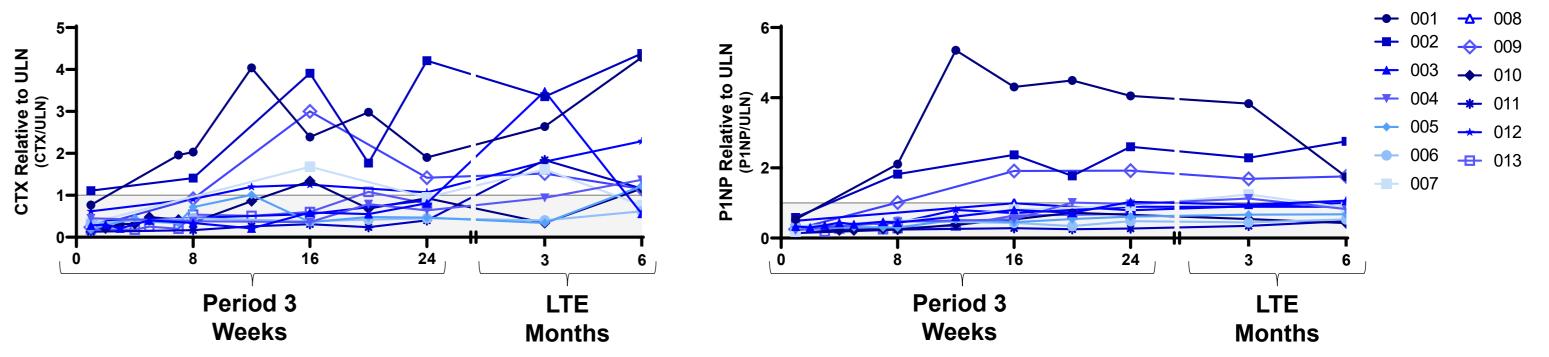


Figure 4: Encaleret increased bone turnover in patients with ADH1. Individual participant corrected for sex and menopausal status reported as relative to sex/age upper limit of normal; "1" = upper limit of normal. Gray shading reflects normal range. Measures shown for weeks 8, 16, and 24 are pre-AM encaleret dose.

Conclusions

- In patients with ADH1, encaleret administered twice daily for 12 months restored mineral homeostasis as demonstrated by:
 - ✓ Increase in PTH
- ✓ Correction of hypocalcemia ✓ Normalization of mean 24-hr urine calcium Reduction in mean blood phosphate ✓ Increase in mean blood magnesium \checkmark Increase in bone turnover with some participants above the normal range • Encaleret was well-tolerated over 12 months with no serious adverse events reported • Outpatient evaluation of encaleret in the Phase 2b long-term extension is ongoing • Phase 3 study initiated in late 2022

Safety and Tolerability

Table 2: Summary of Adverse Events (AEs), n (%)

	Periods 2 & 3	LTE
Subjects with Serious AEs	0 (0%)	0 (0%)
Subjects with AEs	13 (100%)	12 (92%)
Mild	13 (100%)	12 (100%)
Moderate	2 (15%)	4 (33%)
Severe	0 (0%)	0
Number of AEs Reported	78	66
Mild	76 (97%)	57 (86%)
Moderate	2 (3%)	9 (14%)
Severe	0	0
Treatment-related Adverse Events ¹	16 (21%)	1 (2%)
Hypophosphatemia	10 (63%)	0
Hypercalcemia	6 (37%)	1 (100%)

Data as of 08-FEB-2023 and includes all available LTE data at time of data cut. 1. Treatment-related adverse events were transient & resolved either spontaneously or with adjustment of the encaleret dose. Treatment-related AEs were counted as the number of events per period and are presented as a percentage of the total number of AEs.

Acknowledgements

Sincere thanks to the patients, investigators, referring physicians, clinical research staff, and collaborating research partners participating in the study. This study was supported by a public/private partnership between the NIDCR Intramural Research Program and BridgeBio affiliate Calcilytix Therapeutics, Inc.

References

1. Dershem R, et al. Am J Hum Genet. 2020; 106(6):734-747. 2. Hendy G, et al. Prog Molec Biol Transl Sci. 2009; 89:31-95. **3.** Roszko KL, et al. Front Physiol. 2016; 7:458. **4.** Tfelt-Hansen J, et al. Curr Med Chem. 2002; 2:175-193. US--2300047 05/2023