

Long-term Safety and Tolerability of Acoramidis (AG10) in Symptomatic Transthyretin Amyloid Cardiomyopathy: Updated Analysis from an Ongoing Phase 2 Open-label Extension Study

Ahmad Masri, M.D., M.S. Director, Cardiac Amyloidosis Program Assistant Professor of Medicine, Oregon Health & Sciences University @MasriAhmadMD

TRANSFORMING CARDIOVASCULAR CARE FOR YOU. FOR YOUR TEAM. FOR YOUR PATIENTS.

Transthyretin (TTR) amyloidosis cardiomyopathy (ATTR-CM) is an emerging diagnostic and treatment priority

*Mutant TTR only, ^{99m}Tc=Technetium-99m; TAVR=transcatheter aortic valve replacement. References: 1. Gonzalez-Lopez E. et al. *Eur Heart J* 2015. 2. Mohammed SF, et al. *JACC: Heart F*ailure 2014. 3. Hahn VS, et al. *JACC* 2020. 4. Sperry BW et al. *JACC* 2018. 5. Damy T, et al. *Eur Heart J* 2015. 6. Sant'Anna R, et al. Sci Rep. 2017;7(44709):1-15. 7. Coelho T, et al. Neuromuscul Disord. 1996;6(1):S20.

ATTR-CM is a rapidly progressive and fatal disease

Month

Note: Survival probabilities estimated via plot digitization. Source: Elliott P. et al, *Circulation: Heart Failure* 2021

Acoramidis was designed to mimic a naturally occurring TTR variant that protects carriers from ATTR development

Source: Judge D. et al, JACC 2019

Acoramidis Phase 2 design

Schematic of acoramidis Phase 2 as of August 31, 2021¹

Patient selection and objectives

Selected inclusion criteria

- Established diagnosis of ATTR-CM
- NYHA class II or III symptoms
- ≥1 prior hospitalization for heart failure or clinical evidence of heart failure

Primary and secondary objectives

- Safety and tolerability
- Pharmacokinetics
- Pharmacodynamics
- Consort diagram reflects status of participants as of August 31, 2021 or study discontinuation
- Overall, AEs with an outcome of death, cardiac transplant or transition to hospice were reported for 11 participants

ACC22

¹Median 38 months from initial Phase 2 randomization. Median 35 months on open-label acoramidis
²Both declined participation due to geographical constraints regarding study visits.
³Clinicaltrials.gov identifier: NCT03458130
⁴Clinicaltrials.gov identifier: NCT03536767

No safety signals of clinical concern identified in Phase 2 OLE

Summary of treatment-emergent adverse events Number of participants (%)		Summary of serious treatment-emergent adverse events Number of participants (%)	
Any treatment-emergent adverse event	47 (100)	Any serious treatment-emergent adverse event	31 (66.0)
Most common adverse events (≥ 9)		Most common serious adverse events (≥ 4)	
Fall	21 (44.7)	Cardiac failure acute	9 (19.1)
Acute kidney injury	12 (25.5)	Acute kidnev iniurv	7 (14.9)
Cardiac failure congestive	10 (21.3)		E (10.6)
Arthralgia	9 (19.1)	Cardiac failure congestive	5 (10.6)
Cardiac failure acute	9 (19.1)	Fall	5 (10.6)
Constipation	9 (19.1)	Cardiac failure	4 (8.5)
Dyspnea	9 (19.1)	Cardiogenetic shock	4 (8.5)
Fatigue	9 (19.1)	Cardiorenal syndrome	4 (8.5)

Acoramidis was generally well tolerated with a pattern of adverse events consistent with underlying disease, progression of disease, concurrent illnesses, and age of participants

Acoramidis increased serum TTR levels and provided near-complete TTR stabilization

Median NT-proBNP was stable or improving at all time points beyond Month 12

AC

- At Month 30, median change from baseline was -437 pg/mL [-950, 316]
- At Month 30, 15/22 (68%) participants had NT-proBNP levels below their baseline¹

Note: Based on Study AG10-202 data cut on Aug. 31, 2021. Baseline defined as the date of the first dose of acoramidis. NT-proBNP was a reported laboratory parameter, not a pre-specified safety endpoint. ¹Represents all evaluable data from participants who continued in the study

Summary of acoramidis Phase 2 OLE results

Safety and tolerability

- Adverse event profile consistent with baseline disease severity and progression
- No signals of concern observed with median participation of 38 months

Cardiac biomarkers

- Sustained stabilization of TTR demonstrated by increased serum concentrations and ex vivo assays
- Median NT-proBNP was stable or declining at all time points beyond Month 12

Phase 2 OLE data and ongoing participation through 3 years support further development of acoramidis in ATTR-CM; evaluation in a Phase 3 trial is ongoing (ATTRibute-CM)

ATTRibute-CM Phase 3 design includes primary endpoints at Month 12 and Month 30

6MWD = six-minute walk distance; 99mTc = Technetium labeled pyrophosphate (PYP); CV= cardiovascular; KCCQ = Kansas City Cardiomyopathy Questionnaire; NYHA = New York Heart Association. Source: Clinicaltrials.gov identifier: NCT03860935

Summary of Month 12 results

Based on data available at Month 12, acoramidis demonstrated relative to placebo:

- No improvement in 6MWD
- Positive improvement in KCCQ-OS
- ✓ Positive reduction in NT-proBNP
- ✓ Positive improvement in serum TTR
- No safety signals of clinical concern

Note: to facilitate a focused review of the vast majority of the data, outliers greater than 300% change from baseline are not included in this plot.

Note: to facilitate a focused review of the vast majority of the data, outliers greater than 200% change from baseline are not included in this plot

Source: BridgeBio press release published 12/27/2021 ¹Inference analysis (p-value) based on absolute change from baseline between groups ² Modified intent-to-treat (mITT) population defined as all randomized subjects who have received at least one dose of IMP and have at least one post baseline efficacy evaluation. mITT population pre-specified to exclude subjects with baseline eGFR < 30 mL/min/1.73 m²

Percent change from baseline in serum TTR²

Acknowledgements

A sincere thank-you to the patients and families, investigators, referring physicians, clinical research staff, Eidos employees, and collaborating research partners participating in the study.

Phase 2 investigators		
Mandar Aras, MD	Rodney Falk, MD	
University of California San Francisco	Brigham and Women's Hospital	
Daniel Judge, MD	Cesia Gallegos Kattan, MD	
Medical University of South Carolina	Yale University	
Ahmad Masri, MD	Mat Maurer, MD	
Oregon Health & Science University	Columbia University	
Sanjiv Shah, MD	Ronald Witteles, MD	
Northwestern University	Stanford University	

