# bridgebio

#### COMPANY PRESENTATION

160

September 2020

#### **Forward-Looking Statements and Disclaimer**

Statements in this Presentation that are not statements of historical fact are forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Such forward-looking statements include, without limitation, statements regarding BridgeBio Pharma, Inc.'s (the "Company's") research and clinical development plans, expected manufacturing capabilities, strategy, regulatory matters, market size and opportunity, future financial position, future revenue, projected costs, prospects, plans, objectives of management, and the Company's ability to complete certain milestones. Words such as "believe," "anticipate," "plan," "expect," "intend," "will," "may," "goal," "potential," "should," "could," "aim," "estimate," "predict," "continue" and similar expressions or the negative of these terms or other comparable terminology are intended to identify forward-looking statements, though not all forward-looking statements necessarily contain these identifying words. These forward-looking statements are neither forecasts, promises nor guarantees, and are based on the beliefs of the Company's management as well as assumptions made by and information currently available to the Company. Such statements reflect the current views of the Company with respect to future events and are subject to known and unknown risks, including business, regulatory, economic and competitive risks, uncertainties, contingencies and assumptions about the Company, including, without limitation, risks inherent in developing therapeutic products, the success, cost, and timing of the Company's product candidate development activities and ongoing and planned preclinical studies and clinical trials, , trends in the industry, the legal and regulatory framework for the industry, the Company's ability to obtain and maintain regulatory approval for its product candidates, the Company's ability to commercialize its product candidates, future agreements with third parties in connection with the development or commercialization of the Company's product candidates, the size and growth potential of the market for the Company's product candidates, the accuracy of the Company's estimates regarding expenses, future revenue, future expenditures and needs for and ability to obtain additional financing, the Company's ability to obtain and maintain intellectual property protection for its product candidates, potential adverse impacts due to the global COVID-19 pandemic such as delays in clinical trials, preclinical work, overall operations, regulatory review, manufacturing and supply chain interruptions, adverse effects on healthcare systems and disruption of the global economy, and those risks and uncertainties described under the heading "Risk Factors" in the Company's most recent Quarterly Report on Form 10-Q and Annual Report on Form 10-K filed with the U.S. Securities and Exchange Commission ("SEC") and in subsequent filings made by the Company with the SEC, which are available on the SEC's website at www.sec.gov. In light of these risks and uncertainties, many of which are beyond the Company's control, the events or circumstances referred to in the forward-looking statements, expressly or implicitly, may not occur. The actual results may vary from the anticipated results and the variations may be material. You are cautioned not to place undue reliance on these forwardlooking statements, which speak the Company's current beliefs and expectations only as of the date this Presentation is given. Except as required by law, the Company disclaims any intention or responsibility for updating or revising any forward-looking statements contained in this Presentation in the event of new information, future developments or otherwise. No representation is made as to the safety or effectiveness of these product candidates for the therapeutic use for which such product candidates are being studied.

Certain information contained in this Presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this Presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, all of the market data included in this Presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while the Company believes its own internal research is reliable, such research has not been verified by any independent source.

The Company is the owner of various trademarks, trade names and service marks. Certain other trademarks, trade names and service marks appearing in this Presentation are the property of third parties. Solely for convenience, the trademarks and trade names in this Presentation are referred to without the <sup>®</sup> and TM symbols, but such references should not be construed as any indicator that their respective owners will not assert, to the fullest extent under applicable law, their rights thereto.



### We are at Day 1 in the era of genetic medicine



BridgeBio is focused on translating breakthroughs in human genetics into meaningful medicines for patients



Source: Claussnitzer et al., Nature 2020

### A vast opportunity to help patients

### ~27 million

Americans are living with a genetic diseases

### **50%**

Of people affected are children

### Only 5%

Of these diseases have an approved therapy





### We are building a leading genetic disease company

#### Core attributes...

- 1. Distinctive early stage asset selection
- 2. Experienced, productfocused R&D team
- 3. Efficient corporate structure
- 4. The willingness and scale to fail
- 5. Focus at the level of individual diseases and assets

...applied many times...

Eidos a bridgebio company





+ 18 BridgeBio programs

### ...has yielded a pipeline poised to deliver over the next 12-24 months

- Major catalysts from four core value drivers, three of which are in \$1B+ markets
- Two NDA submissions expected in 2020
- A distinctive early stage targeted oncology pipeline
  - SHP2
  - KRAS
  - GPX4
- Multiple INDs submitted in 2020
- >10 INDs filed over 5 years



## BridgeBio is led by a world-class team of experienced drug developers

#### We rely on some of the top R&D minds in this industry to select assets...



...and put them in the hands of one of the most productive groups of R&D operators in the industry

| Uma Sinha, PhD<br>Chief Scientific Officer                          | CBT<br>PORTOLA"<br>PHARMACEUTICALS | (eptifibatide) Injection<br>INTEGRILIN<br>Workshort, rockided-app              |
|---------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------|
| Eli Wallace, PhD<br>Chief Scientific Officer in Residence, Oncology | REPHARMA Peloton<br>Therapeutics   | (binimetinib) is ng takes<br>(binimetinib) is ng takes<br>PT2997 (HIF2αi, Ph3) |
| Robert Zamboni, PhD<br>Chemistry                                    | S MERCK FROSST                     | SINGULAIR ARCOXIA VIOXX<br>(montelulant, MSD) (rofeccardb, MSD)                |

Together, our R&D team is responsible for 100+ INDs and 20+ approved products



## We believe genetic disease drug discovery is lower risk, faster, with potentially higher returns than traditional drug discovery





\*For first two BridgeBio programs

|   | Criteria                    | Relevance                                                                                                                                                                                             |
|---|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | High probability of success | <ul> <li>Historically higher probability of success for genetic disease drugs</li> <li>BridgeBio's early programs have outperformed historical probabilities</li> </ul>                               |
|   |                             |                                                                                                                                                                                                       |
| 2 | Number of programs          | <ul> <li>We find great science and unlock its potential for patients</li> <li>Always searching for the next PellePharm or Eidos</li> <li>Scale allows for objective assessment and failure</li> </ul> |
|   |                             |                                                                                                                                                                                                       |
| 3 | Capital efficiency          | <ul> <li>Generate value by making each program ROI-positive</li> <li>Driven by judicious use of capital at the high-risk preclinical stages</li> </ul>                                                |



### BridgeBio since IPO (1 of 2)

| From cutting edge                                                     | to cutting edge + rock solid                                                                                                                                                |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>Achievement:</li><li>Development strategy successes</li></ul> | <ul> <li>Examples:</li> <li>Adjuvant urothelial (first in class in potential \$1B+ market), Clinical Advisory Board (Robert Harrington, David Solit, and others)</li> </ul> |
| <ul> <li>Continued clinical<br/>execution</li> </ul>                  | <ul> <li>Six new clinical trials initiated (16 total), &gt;350 trial<br/>sites across 25 countries</li> </ul>                                                               |
| <ul> <li>Late-stage regulatory<br/>submissions</li> </ul>             | <ul> <li>NDA for MOCD Type A submitted, ODD &amp; Fast<br/>Track received for 2L CCA program</li> </ul>                                                                     |
| <ul> <li>Increasing discovery<br/>productivity</li> </ul>             | <ul> <li>7 INDs filed</li> </ul>                                                                                                                                            |
| <ul> <li>New high-quality programs</li> </ul>                         | <ul> <li>8 new programs, including LGMD2i and ADH1,<br/>both in the clinic</li> </ul>                                                                                       |

Bedrock in place to build leading genetic disease company in next 12-24 months



### BridgeBio since IPO (2 of 2)

| From cutting edge to cutting edge + rock solid             |                                                                                                                                        |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <ul><li>Achievement:</li><li>Quick program kills</li></ul> | <ul> <li>Examples:</li> <li>Multiple programs terminated, with average spend less than \$5M</li> </ul>                                 |  |  |  |
| <ul> <li>Continued access to<br/>capital</li> </ul>        | <ul> <li>\$550M raised through convertible bond<br/>placement</li> </ul>                                                               |  |  |  |
| <ul> <li>Doubling of the<br/>organization</li> </ul>       | <ul> <li>From ~200 employees to 364. Added CAO, COO,<br/>top scientists, commercial expertise at BOD and<br/>company level</li> </ul>  |  |  |  |
| <ul> <li>Strong data</li> </ul>                            | <ul> <li>DEB clinical data, TTR clinical data, CAH and<br/>Canavan pre-clinical data, achon pre-clinical<br/>data, TIO data</li> </ul> |  |  |  |
| <ul> <li>Dedication to patients</li> </ul>                 | <ul> <li>Portfolio-wide support of advocacy and COVID-<br/>centric reach-out to help outside therapeutic<br/>programs</li> </ul>       |  |  |  |

Bedrock in place to build leading genetic disease company in next 12-24 months



### BridgeBio drug engineering basics: our platform



Well described diseases than can be targeted at their source

Tailored therapeutic technologies to create first or best-in-class medicines Broad clinical development capabilities across therapeutic areas and geographies

Building the capabilities to deliver genetic medicines to patients globally



## Discover: Three defining features of a BridgeBio program

#### Feature

Monogenic diseases where molecular pathophysiology is well-understood

#### **Benefit**

- Reduced target risk
- Rational drug design and development

Diseases we can target directly at their source

First or best-in-class potential for high unmet need diseases

- Direct and potentially complete correction of disease-causing biology
- High potential benefit to patients
- Significant value to health system



## Capabilities to discover new genetic disease targets at scale

#### Our target identification engine is driven by three core areas of strength:

#### **Computational genomics**

- De novo target discovery
- Target validation
- Indication expansion

### Systematic disease mapping

 Prioritization and manual annotation of the 7K known genetic diseases



### Broad network of academic partners

15 current partnerships



THE UNIVERSITY OF TEXAS MDAnderson Cancer Center







## Create: We select the optimal therapeutic modality to target each disease at its source

#### Pipeline leverages industry-leading capabilities across 4 modalities:

#### **Medicinal chemistry**



- Molecular dynamics
- Reversible and irreversible chemistry
- Topical formulations

**Optimal use:** Inhibition of GOF or allosteric activation of LOF mutations

#### **Gene therapy**



- Vector optimization
- Novel capsid engineering
- Manufacturing and analytical assay development

**Optimal use:** Replacement of intracellular protein in LOF diseases

#### **Therapeutic proteins**



- Large protein manufacturing
- Formulation expertise
- Comparability assay development

**Optimal use:** Replacement of extracellular protein in LOF diseases

#### Antisense oligonucleotides



- Target mapping with functional genomics
- Activity screening assay development
- Novel backbone and base chemistry

**Optimal use:** Inhibition of GOF or activation of WT allele in haploinsufficiency diseases



### Test: our global clinical development footprint

- 15 ongoing trials across 5 different therapeutic areas, 350 trial sites, and 27 countries
- Expert, dedicated R&D teams in each therapeutic area
- Creative clinical and regulatory strategy, e.g., unique, nested phase 3 trial design for acoramadis in ATTR
- Central operations toolkit for enrollment, protocol quality, site activation, CRO quality, regional performance

#### **Countries with BridgeBio trial sites**





## Deliver: We are developing the capabilities to deliver our products to patients across the globe

- Global commercial infrastructure to leverage our drug and disease expertise
- Diagnostic partnerships to identify patients in need of our medicines
- Disease awareness strategies, including close partnerships with patient advocacy groups
- Patient services (HUB services) to assist the most patients
- Commercial partners in strategic geographies:







### The platform is delivering



**Discover** Novel genetic disease targets 20+

Disclosed programs in the pipeline



**Create** Medicines with industry-leading research capabilities

>10 INDs since 2015



**Test** Our drugs through global development footprint

**Deliver** Our products to patients through commercial infrastructure **15** Clinical trials across the globe

**2** Product launches in 2021



## Our pipeline of 20+ development programs spans multiple therapeutic areas and drug modalities

| Small molecule 💭 Topical small molecule Fiologics DIM Gene therapy |                        |                         | herapy               |                 | = (      | Core value   | drivers over     | the next 12-24 | months      |         |
|--------------------------------------------------------------------|------------------------|-------------------------|----------------------|-----------------|----------|--------------|------------------|----------------|-------------|---------|
| Portfolio                                                          | Dragman 1              | Davis modernion         | Discourse            | Patient         |          | Pre-Clinical |                  | Clinical       | Clinical    |         |
| segment                                                            | Program                | Drug mechanism          | Diseases             | pop.<br>(US+EU) | Modality | Discovery    | IND-<br>enabling | Phase1         | Phase 2     | Phase 3 |
|                                                                    | Acoramidis             | TTR stabilizer          | ATTR-CM              | >400K           | $\phi$   |              |                  |                | 1           |         |
| Mendelian                                                          | Fosdenopteri           | n cPMP replacement      | MoCD type A          | 100             | $\phi$   |              |                  |                | 1           | NDA     |
|                                                                    | Infigratinib           | Low-dose FGFR1-3i       | Achondroplasia       | 55K             | $\phi$   |              |                  |                |             |         |
|                                                                    | Encaleret              | CaSR antagonist         | ADH1 / HP            | 12K / 200       | κφ       |              |                  |                |             |         |
|                                                                    | Zuretinol              | Synthetic retinoid      | IRD (RPE65 or LRAT)  | ЗK              | $\phi$   |              |                  |                |             |         |
|                                                                    | BBP-418                | Glycosylation substrate | LGMD2i               | 7K              | $\phi$   |              |                  |                | 1           |         |
|                                                                    | BBP-711                | GO1 inhibitor           | PH1 / FSF            | 5K / 1.5M       | $\phi$   |              |                  |                | 1<br>1<br>1 |         |
|                                                                    | BBP-671                | PanK activator          | PKAN / OA            | 7K              | 苡        |              |                  |                | <br> <br>   |         |
|                                                                    | BBP-761                | Succinate prodrug       | LHON                 | 20K             | $\phi$   |              |                  |                | 1           |         |
|                                                                    | BBP-472                | ΡΙ3Κβί                  | PTEN autism          | 120K            | 苡        |              |                  |                | 1           |         |
| Genetic                                                            | Patidegib <sup>2</sup> | Topical SMOi            | Gorlin / BCC         | 120K            | D        |              |                  |                | 1           |         |
| Dermatology                                                        | BBP-589                | Recombinant COL7        | RDEB                 | 1.5K            |          |              |                  |                |             |         |
| 44                                                                 | BBP-681                | Topical PI3Kαi          | VM / LM              | 117K            |          |              |                  |                | 1           |         |
|                                                                    | BBP-561                | Topical KLK 5/7i        | Netherton            | 11K             | Ģ        |              |                  |                | <br> <br>   |         |
| Targeted                                                           | Infigratinib           | FGFR1-3i                | FGFR+ tumors         | 37K             | 苡        |              |                  |                | 1           |         |
| Oncology                                                           | BBP-398                | SHP2i                   | Multiple tumors      | >500K           | ¢.       |              |                  |                | 1           |         |
|                                                                    | BBP-454                | Pan-mutant KRASi        | KRAS+ tumors         | >500K           | ¢.       |              |                  |                | 1<br>1      |         |
|                                                                    | BBP-954                | GPX4i                   | Multiple tumors      | >500K           | t)       |              |                  |                | 1           |         |
| Gene Therapy                                                       | BBP-631                | 21-OH gene therapy      | CAH                  | >75K            | MM       |              |                  |                | •<br>•<br>• |         |
| HIRDE                                                              | BBP-812                | ASPA gene therapy       | Canavan              | 1K              | MM       |              |                  |                | <br> <br>   |         |
|                                                                    | BBP-815                | TMC1 gene therapy       | Genetic hearing loss | 10K             | MM       |              |                  |                | 1<br>1<br>1 |         |

<sup>1</sup> Each of our programs is housed in a separate subsidiary; <sup>2</sup>We are party to an option agreement pursuant to which LEO Pharma A/S has been granted an exclusive, irrevocable option to acquire PellePharm, including the BBP-009 program. If the option is exercised by LEO Pharma A/S, we will no longer have rights to develop and commercialize BBP-009.



### Four core value drivers over the next 12-24 months

| Program                                                                                                                                                                                                           | Population<br>(US+EU) | Status                      | Upcoming event(s)                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|----------------------------------------------------------------------------------------|
| <ul> <li>Acoramidis: TTR stabilizer for ATTR</li> <li>Most potent TTR stabilizer; MOA mimics protective genetic variant</li> <li>Data to date suggest potential best-in-class clinical profile</li> </ul>         | >400K                 | Enrolling<br>ATTR-CM<br>Ph3 | <ul> <li>Topline Ph3 part A data 1H22</li> <li>Topline Ph3 part B data 2023</li> </ul> |
| <ul> <li>Low-dose infigratinib (FGFRi) for achondroplasia</li> <li>Only agent designed to directly target genetic cause of ACH</li> <li>Differentiated pre-clinical data on cranial and spinal defects</li> </ul> | 55K                   | Enrolling<br>Ph2 study      | <ul><li>Dose first child</li><li>Ph2 data 2021</li></ul>                               |
| <ul> <li>Gene therapy for congenital adrenal hyperplasia (BBP-631)</li> <li>One of largest potential gene therapy markets</li> <li>Only approach capable driving endogenous cortisol production</li> </ul>        | >75K                  | GLP tox<br>ongoing          | <ul><li>File IND</li><li>Ph1/2 data 2021</li></ul>                                     |
| <ul> <li>Encaleret: CaSR antagonist for autosomal dominant<br/>hypocalcemia type 1 (ADH1)</li> <li>Directly targets ADH1 genetic driver; potentially first-in-class</li> </ul>                                    | 12K                   | Ph2-ready                   | <ul><li>FPI in Ph2</li><li>Ph2 data 2021</li></ul>                                     |

### Acoramidis (formerly AG10) for TTR amyloidosis



Art, ATTR-CM patient

- Addressing large and growing need in ATTR, a fatal disease affecting >400K patients
- Targeting the disease at its source by stabilizing TTR, a genetic and clinically validated mechanism
- Advancing acoramidis, a potential best-inclass drug that mimics naturally occurring rescue mutation
- Phase 2 open label extension study suggests potential to reduce mortality and cardiovascular hospitalizations at 15 months
- Executing Phase 3 study in ATTR-CM with topline data expected in 2022

## Acoramidis is designed to treat TTR amyloidosis at its source



bridgebio

21

## Acoramidis structurally mimics disease-protective mutation by hyper-stabilizing TTR



Strong inter-monomer H-bonds observed via X-ray crystallography Unique binding mode vs other stabilizers



## Human genetics suggest TTR stability is associated with disease severity



Greater TTR destabilization correlates with earlier disease onset, increased disease severity

ATTR-protective mutations stabilize TTR tetramer, preventing dissociation

k<sub>diss</sub> = dissociation constant Source: Hammarstrom, P. et al. PNAS 2002, 99:16427-16432



### Higher dose of tafamidis demonstrated increased TTR stabilization and greater clinical benefit in ATTR-ACT + LTE

#### Phase 3 ATTR-ACT study tested two doses of tafamidis (20 mg & 80 mg) vs. placebo

- In an analysis of ATTR-ACT combined with long-term extension (LTE), benefit of tafamidis 80 mg vs. 20 mg was evident on all-cause mortality<sup>1</sup>
- At baseline, ATTR-ACT participants treated with 80 mg of tafamidis were older and had more severe evidence of disease than those treated with 20 mg of tafamidis<sup>1</sup>
- Participants receiving 80 mg of tafamidis (vs. 20 mg) exhibited greater TTR stabilization<sup>2</sup>



#### Increased levels of TTR stabilization may translate to improved clinical outcomes in ATTR-CM

1 Damy, T., ESC Heart Failure Association Discoveries 2020. "The Tafamidis in Transthyretin Cardiomyopathy Clinical Trial." 2 FDA CDER Clinical Pharmacology and Biopharmaceutics, Clinical Review (Vyndagel/Vyndamax), 2019; Fourfold increase in tafamidis dose did not lead to a



fourfold increase in TTR stabilization due to non-linear pharmacokinetics

## Phase 2 ATTR-CM trial provides randomized 28-day and 15-month open label data



Both declined participation due to geographical constraints regarding study visits
 Median rollover period of 72 days (range 41-152 days)
 Judge, D.P. et al. JACC Vol. 74, No. 3, 2019:285 – 95
 Judge, D.P. et al. American Heart Association 2019

### Serum TTR levels, a prognostic indicator of survival, increased upon acoramidis treatment and were maintained throughout Ph 2 study



1 400mg and 800mg BID acoramidis groups pooled during randomized portion

2 Defined as the lower limit of the reference interval for the serum prealbumin (TTR) clinical laboratory assay

bridgebio

Source: Judge, DP et al. American Heart Association Scientific Sessions 2019

## Cardiac biomarkers were unchanged in acoramidis-treated participants throughout OLE

#### **NT-proBNP**

pg/mL; 95% confidence interval, quartiles, median



#### **Troponin I**

ng/mL; 95% confidence interval, quartiles, median



## Participants in the acoramidis Ph2 study had similar baseline characteristics as those in the tafamidis Ph3

**Baseline characteristics from ATTR-ACT study and AG10 Phase 2 study** 

|                     | ATTR-ACT Ph3 study<br>Tafamidis group <sup>1</sup> | ATTR-ACT Ph3 study<br>Placebo group <sup>1</sup> | Acoramidis Ph2 study<br>All groups <sup>2</sup> |
|---------------------|----------------------------------------------------|--------------------------------------------------|-------------------------------------------------|
| Age, median (range) | 75 (46-88)                                         | 74 (51-89)                                       | 73 (60-86)                                      |
| Male, n (%)         | 241 (91%)                                          | 157 (89%)                                        | 45 (92%)                                        |
| ATTRm, n (%)        | 63 (24%)                                           | 43 (24%)                                         | 14 (29%)                                        |
| NYHA Class          |                                                    |                                                  |                                                 |
| Class I, n (%)      | 24 (9%)                                            | 13 (7%)                                          | 0 (0%)                                          |
| Class II, n (%)     | 162 (61%)                                          | 101 (57%)                                        | 35 (71%)                                        |
| Class III, n (%)    | 78 (30%)                                           | 63 (36%)                                         | 14 (29%)                                        |
| Race                |                                                    |                                                  |                                                 |
| White, n (%)        | 211 (80%)                                          | 146 (83%)                                        | 35 (71%)                                        |
| Black, n (%)        | 37 (14%)                                           | 26 (15%)                                         | 10 (20%)                                        |
| Other, n (%)        | 16 (6%)                                            | 5 (3%)                                           | 4 (8%)                                          |

1 Maurer, M.S. et al. N Engl J Med. 2018;379:1007–16 2 Judge, D.P. et al. JACC Vol. 74, No. 3, 2019:285 – 95



### Deaths and CV hospitalizations reported in acoramidis Phase 2 OLE were lower than in placebo-treated ATTR-ACT participants



#### Phase 3 ATTRibute study expected to complete enrollment in 1H21

1 Based on routine adverse event reporting

Note: These data are based on a cross-trial comparison and not a randomized clinical trial. As a result, the values shown may not be directly comparable Source: Judge, DP et al. American Heart Association Scientific Sessions 2019



### No safety signals of clinical concern identified during open label extension

Summary of treatment-emergent adverse events Number of participants (%)

| Any Adverse Events               | 46 (97.9) |
|----------------------------------|-----------|
| Most common Adverse Events (≥ 5) |           |
| Fall                             | 12 (25.5) |
| Cardiac failure congestive       | 7 (14.9)  |
| Dyspnoea                         | 6 (12.8)  |
| Acute kidney injury              | 6 (12.8)  |
| Fluid overload                   | 5 (10.6)  |
| Gout                             | 5 (10.6)  |
| Pneumonia                        | 5 (10.6)  |

Summary of treatment-emergent severe adverse events Number of participants (%)

| Any Serious Adverse Events                | 19 (40.4)            |
|-------------------------------------------|----------------------|
| Number of subjects who died               | 3 (6.5) <sup>1</sup> |
| Any Cardiovascular Serious Adverse Events | 12 (25.5)            |
| Most common Serious Adverse Events (≥ 2)  |                      |
| Cardiac failure congestive                | 5 (10.6)             |
| Acute kidney injury                       | 4 (8.5)              |
| Atrial fibrillation                       | 2 (4.3)              |
| Cardiac failure                           | 2 (4.3)              |
| Fall                                      | 2 (4.3)              |
| Dehydration                               | 2 (4.3)              |

### AG10 was generally well tolerated with a pattern of adverse events consistent with underlying disease severity, concurrent illnesses, and age of participants

1 Includes 2 subjects who had SAEs with an outcome of death (1 disease progression; 1 cervix carcinoma); 1 subject died due to heart failure 86 days after the last dose of study drug

Data reported as of 8/31/2019 in conjunction with annual regulatory reporting and review



## Data from 12-month registration endpoint expected in 1H22

#### **ATTRibute-CM study schematic**



Secondary endpoints include: Kansas City Cardiomyopathy Questionnaire, serum TTR, TTR stabilization <sup>1</sup>As local standard of care evolves, concomitant use of approved, indicated therapies may be allowed

6MWD = Six minute walk distance; NYHA = New York Heart Association;

<sup>99m</sup>Tc = Technetium labeled pyrophosphate (PYP) or bisphosphonate (e.g., DPD); dx = diagnosis;

CV hosp = cardiovascular-related hospitalizations



### Low-dose FGFR inhibitor (infigratinib) for achondroplasia



Claudia, child with achondroplasia

#### Achondroplasia overview:

- Prevalence: 55,000 (US+EU) one of the most common genetic conditions
- Genetic driver: FGFR3 activation
- Pathophysiology: Up regulation of STAT1 and MAPK in the growth plate cause cranial, spinal, and stature symptoms

#### Features of a potential best-in-class medicine for achondroplasia:

- Direct targeting of FGFR3 and normalization both STAT1 and MAPK signaling pathways
- Potential to address all drivers of symptoms, including cranial, spinal and stature issues
- Oral dosing, the most convenient solution for children with achondroplasia and their families

## Potential best-in-class approach to treating achondroplasia directly at its genetic source





## Low-dose infigratinib improves all the key drivers of clinical symptomology in validated ACH mouse model



#### **12%** increase in L4-L6 length

73% increase in disc width



May lead to **decrease** in **spinal stenosis**, possibly **reducing need for surgery** 

#### **3** Disproportionate short stature

21% increase in femur length **33%** increase in tibia length

May lead to **increased stature** and **proportionality** 





Source: Komla-Ebri et al. J Clin Inv 2016 Note: percent increase compared to vehicle treated FGFR3<sup>Y367C/+</sup> mouse, infigratinib treatment with 2mg/kg subcutaneous dose

## Low-dose infigratinib showed potential best in-class preclinical profile in validated achondroplasia mouse model

#### Preclinical data from infigratinib and other investigational achondroplasia therapies



Percent increase compared to non-treated mouse

Source: Komla-Ebri et al. J Clin Inv 2016, Lorget et al. Am J Hum Genet 2012, Garcia et al. Science Trans Med 2013, Breinholt ENDO 2017 Note: subcutaneous doses, percent increase compared to vehicle treated FGFR3<sup>Y367C/+</sup>, FGFR3<sup>ACH/+</sup> mouse as noted in "Mouse model" columns Infigratinib treatment with 2mg/kg subcutaneous dose <sup>1</sup>Based on vosoritide continuous infusion; \*Value estimated using Digitizelt.



## *In vitro* data suggest infigratinib is a more potent inhibitor of MAPK signaling than vosoritide

#### PhosphoMAPK/MAPK ratio in FGF18-conditioned TAN 4-18-chondrocytes

Vosoritide, infigratinib





## We have a wide anticipated therapeutic index in achondroplasia

### Infigratinib has been tested in >700 humans in our oncology program, providing significant data on PK, tolerability and safety

Most common and dose-limiting side effect is phosphorus elevation (on-target through FGFR1 inhibition), which occurs significantly above our planned achondroplasia doses



<sup>1</sup>Based on 125mg dose and 60kg adult; <sup>2</sup>Based on estimated TD<sub>50</sub> at 40mg and 60kg adult; <sup>3</sup>Based on PK modeling and allometric scaling from animal models

## The PROPEL clinical program is enrolling with data expected in 2021



#### **Key inclusion criteria**

- Children 2.5 10 years old
- Clinical and molecular ACH diagnosis

#### **Primary objectives**

 Baseline annualized growth velocity (AGV)

#### **Primary objectives**

- Identify safe therapeutic dose for expansion / pivotal study
- Safety and tolerability
- Change from baseline in AGV

#### **Primary objectives**

Long-term safety and efficacy



## Gene therapy for congenital adrenal hyperplasia (CAH)



Maris, child with CAH

#### **Program overview:**

- Prevalence: 75,000 (US+EU) One of the largest known AAV gene therapy markets
- Genetic driver: 21-hydroxylase inactivation
- Pathophysiology: Inability to produce cortisol causes need for supraphysiologic doses of synthetic steroids, 3x increase mortality risk, hirsutism, Cushingoid symptoms

#### We believe CAH is an ideal indication for AAV gene therapy:

- Low threshold to correct phenotype, validated by human clinical genetics
- Only approach designed to induce endogenous cortisol production, potentially allowing steroid withdrawal
- Durable transgene delivery to the adrenal gland of NHP with IV dosing of our construct
- Preliminary Ph1/2 data anticipated in 2021

### **Overview of hormone dysregulation in CAH**



#### **HPA** Features

- **Diurnal rhythm of cortisol release**  $\mathbf{M}$
- $\mathbf{\nabla}$ Sufficient aldosterone to retain sodium  $\mathbf{\nabla}$ 
  - Dynamic cortisol response to stress
    - Appropriate androgen levels

 $\mathbf{\overline{M}}$ 

#### Hormonal dysregulation with 210HD; no cortisol "brake" on ACTH, shunting of 170HP to androgens



#### **Disease Symptoms**

- Sleep dysregulation, chronic fatigue
- Salt-wasting causing hyponatremia, hyperkalemia
- Life-threatening adrenal crisis
- Infertility, hirsutism, adrenal rest tumors



## Genotype-phenotype studies show that >5-10% of enzyme activity results in nonclassical CAH

- Only a small amount of enzyme is required to rescue the phenotype due to the high enzymatic efficiency/selectivity of 21-Ohase
- We believe this low threshold creates an ideal situation for AAV gene therapy restoring as little as 5% of normal enzyme activity could dramatically improve symptoms



#### Peak morning cortisol (ug/dl)



### **Proof of concept 210H gene therapy in the definitive mouse model improves body-weight and disease markers**

#### **Mouse Model**

- H-2<sup>a218</sup> (CYP21<sup>-/-</sup>) mouse model
- Deletion is lethal without GC administration; with GC administration, adult mice are still frail
- Increase in biomarkers:
  - Progesterone (210H substrate) 4x higher
  - Renin 160x higher

#### Substantial recovery of mouse body-weight



Black: Sham vector in model mice

Grey: CYP21 vector in model mice

#### White: Control mice

Vector

- AAVrh10 vector
- Human CYP21A2 cDNA
- Hemagglutinin tag
- CAG promoter
- 2x10<sup>13</sup> vg/kg dose

#### **Correction of progesterone**



### At 18 weeks, a VGC of 0.13 was still sufficient for phenotypic restoration



Source: Perdomini M, Dos santos C, Goumeaux C, Blouin V, Bougnères P. An AAVrh10-CAG-CYP21-HA vector allows persistent correction of 21-hydroxylase deficiency in a Cyp21(-/-) mouse model. Nature Gene Ther. 2017;24(5):275-281.

### NHP study showed durable transgene expression with VGC levels above the expected therapeutic threshold

**BBP-631** is our AAV5 gene therapy with a codon optimized 21-OH cDNA, CAG promoter delivered to the adrenal cortex via IV dosing

We can durably transduce the NHP adrenal gland with our construct at >20x the vector required to correct the CAH phenotype in mice



 Mean vector genome copies per cell appear stable at 24 wks

#### BBP-631 mRNA levels in the adrenal gland



Transgene expression is dosedependent and stable out at 24 wks



Source: ESGCT 2019

## NHP protein data using mass spec methods suggests potentially therapeutic levels of 21-hydroxylase enzyme

- We have developed mass-spec methods to quantify protein expression by identifying differential peptides between human and NHP 21-OH
- These data suggest dose-dependent enzyme expression in the adrenal cortex from 9%-24% of WT levels
- Genotype-phenotype relationship suggests as little as 5% of WT enzyme activity is associated with the mild/asymptomatic non-classic form of CAH

### Human 21-hydroxylase protein as a % of NHP 21-OH protein (Mass Spec quantification)



## BridgeBio gene therapy manufacturing and research capabilities

#### **Dedicated space at FDA approved commercial facility:**

- 5,000 square feet of cGMP space at Catalent's facility at BWI
- 4 cleanrooms which allow us to run multiple 500L suspension bioreactors in parallel
- Flexibility to allow multiple manufacturing platforms including HEK293 triple transfection and baculoviral approaches

#### Internal research, process development and analytical capabilities:

- 15,000 square feet of fully equipped lab space in Research Triangle Park, North Carolina
- Equipment mirror our Catalent suite such that upstream and downstream processes can be optimized in-house
- Experienced process development team focused on yield optimization and state-of-the-art analytical methods



## Encaleret for disorders of calcium homeostasis, including autosomal dominant hypocalcemia type 1 (ADH1)



Alexis and Jackson, ADH1 patients

### Targets hypocalcemia/hypercalciuria by selectively inhibiting the calcium-sensing receptor (CaSR)

 Opportunity identified in collaboration with global experts at the NIH

### Potential 1st in class CaSR inhibitor with differentiated profile for ADH1 and hypoparathyroidism

- Initial development in genetically-defined population of ADH1, driven by CaSR activating mutations (~12K carriers in US)
- Potential for expansion into post-surgical chronic hypoparathyroidism (~200K patients in US & EU)

#### Prior clinical experience enables accelerated development

- Well tolerated in >1,200 human subjects and increased serum calcium in a dose-dependent manner
- Phase 2 study in ADH1 initiated with proof-of-concept data anticipated in 2021

## Encaleret (CaSR inhibitor) is designed to treat ADH1 at its genetic source

#### **CaSR** activating mutations cause:

- Low serum calcium levels and high urinary calcium levels
- Low serum parathyroid hormone (PTH) levels
- Chronic kidney damage, seizures, muscle spasm, cardiac disease

#### Our selective CaSR inhibitor has the potential to:

- Increase serum PTH levels
- Normalize serum and urinary calcium levels through PTH-dependent and independent mechanisms
- Reduce risk of chronic kidney damage due to hypercalciuria





### Encaleret normalized serum and urine calcium in the mouse model of ADH1

Dose-dependent increases in serum calcium

Normalization of urinary calcium





## Human clinical data suggests dose-dependent elevations of serum calcium and parathyroid hormone (PTH) levels

Encaleret increased serum calcium in clinical trials in patients with osteoporosis...

...while simultaneously increasing serum PTH levels







Source: Data on file

## Phase 2, open-label dose-ranging study will evaluate safety, tolerability, and efficacy of encaleret in ADH1



#### Top-line, proof-of-concept results of encaleret in ADH1 are expected in 2021



<sup>1</sup> Pharmacodynamic measurements to be collected through duration of study.

### Early oncology portfolio



Basia, pancreatic cancer patient

#### World-class oncology team drives our discovery and development

- Eli Wallace, CSO Oncology
- Frank McCormick, Chairman of Oncology
- Richard Scheller, Chairman of R&D



#### **Our KRAS platform has produced 3 pan-mutant programs:**

- 1 H95 approach, designed to block effector signaling
- 2 KRAS:PI3K blocker approach, designed to block PI3K effector signaling
- 3 C185 approach, designed to block KRAS prenylation and activation

### We are also prosecuting novel targets with extensive academic validation

- **SHP2i** for multiple tumors (10+ recent papers in *Nature, Science, Nature Medicine*)
- GPX4i for multiple tumors (10+ recent papers in Nature, Cell, Science, Cancer Cell)

| Program                       | МОА                                                       | Disease         | Stage     | Next anticipated update       |
|-------------------------------|-----------------------------------------------------------|-----------------|-----------|-------------------------------|
| Pan-mutant<br>KRAS inhibitors | (1) H95 approach<br>(2) PI3K blocker<br>(3) C185 approach | KRAS+ cancer    | Discovery | Clinical candidate nomination |
| SHP2 inhibitor                | Allosteric inhibitor                                      | Multiple tumors | Pre-IND   | IND submission in 2020        |
| GPX4 inhibitor                | Covalent inhibitor                                        | Multiple tumors | Discovery | Clinical candidate nomination |

## KRAS: multiple shots on goal with our pan-mutant inhibitor programs – each with a unique MOA targeting a novel pocket





## SHP2: Our compound shows best-in-class potential and is expected to enter the clinic in 2020



1 Predicted human PK based on preclinical in vivo data 2 Preclinical data of combination efficacy with SHP2i

53 SOURCE: US incidence estimated from SEER, TCGA and Kiuru & Busam "The NF1 gene in tumor syndromes and melanoma"; all scaled for WW incidence

### BBP-398 monotherapy study initiating in 2020; combo trials to follow



#### Initial clinical combinations of focus based on SHP2i preclinical data

|                | SHP2i Combination Partner | Tumor growth inhibition |
|----------------|---------------------------|-------------------------|
| KRAS G12Ci     | AMG 510                   | ~130%                   |
| EGFRi          | Osimertinib               | ~125%                   |
| PD-1           | Anti-mouse PD-1           | ~90%                    |
| MEK            | Trametinib                | ~80%                    |
| CDK4/6 and MEK | Trametinib + palbociclib  | ~110%                   |



### **GPX4: Potential first-in-class therapy for a novel cancer** target

#### GPX4 is the key negative regulator of ferroptosis

- GPX4 neutralizes toxic free radicals at the lipid membrane, protecting cells from death (ferroptosis)
- We are developing covalent inhibitors of GPX4 designed to induce ferroptosis in cancer cells
- Recent high profile publications provide preclinical in vivo rationale for monotherapy and combinations with IO, kinase inhibitors and chemotherapy



#### In vivo monotherapy activity in RCC xeno model





Synergy with targeted therapies and immunotherapy using in vitro models

Optimization of oral lead compounds ongoing



Source: Data on file

### Three late-stage programs continue to progress toward the market

| Program                                                               | 2019                                                             | 2020                                 | 2021                                                                          |
|-----------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------|
| Fosdenopterin: cPMP<br>replacement for MoCD type A                    | <ul> <li>Initiate rolling NDA<br/>submission</li> </ul>          | ✓ Complete rolling<br>NDA submission | <ul> <li>FDA approval /<br/>launch</li> <li>Potential PRV<br/>sale</li> </ul> |
| Infigratinib: FGFRi for 2L<br>cholangiocarcinoma with<br>FGFR2 fusion | <ul> <li>Complete enrollment<br/>in Ph2 pivotal study</li> </ul> | Complete NDA submission              | FDA approval /<br>launch                                                      |
| <b>Topical patidegib:</b> SMOi for Gorlin syndrome                    | <ul> <li>Complete enrollment<br/>in Ph3 study</li> </ul>         | Last patient last visit              | <ul> <li>Topline data</li> <li>Potential payment from Leo</li> </ul>          |

We are building a track record of late-stage clinical and regulatory execution



### Multiple catalysts anticipated in 2020-2021

#### **ESTIMATED** 2020 2021 **1H 2H** FY New program announcements Low-dose FGFRi for TTR stabilizer for ATTR: Complete achondroplasia: Begin dosing Ph2 enrollment of ATTR-CM Ph3 FGFRi for cancer: FPI Ph3 adjuvant urothelial carcinoma New IND filings Low-dose FGFRi for study achondroplasia: Ph2 PoC data cPMP for MoCD type A: Complete $\checkmark$ FGFRi for cancer: FPI Ph2 FGFR NDA submission CAH gene therapy: Ph1/2 PoC fusion tumor agnostic Ph2 study data $\checkmark$ CaSR antagonist for ADH1: Ph2 study first patient in CaSR antagonist for ADH1: Ph2 POC data FGFRi for cancer: 2L CCA NDA submission Topical SMOi for Gorlin: Topline Ph3 data FGFRi for cancer: 2L CCA approval and launch cPMP for MoCD type A: Approval and launch Recombinant COL7 for RDEB: Topline Ph1/2 data

\$841mn in cash and equivalents as of 2Q20 expected to provide runway into 2022

