BridgeBio Oncology

Fourth quarter 2022
Forward-Looking Statements and Disclaimer

Statements in this Presentation that are not statements of historical fact are forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Such forward-looking statements include, without limitation, statements regarding BridgeBio Pharma, Inc.'s (the "Company") research and clinical development plans, expected manufacturing capabilities, commercialization and general strategy, regulatory matters, market size and opportunity, future financial position, future revenue, projected costs, prospects, plans, objectives of management, and the Company’s ability to complete certain milestones. Words such as "believe," "anticipate," "plan," "expect," "intend," "will," "may," "goal," "potential," "should," "could," "aim," "estimate," "predict," "continue" and similar expressions or the negative of these terms or other comparable terminology are intended to identify forward-looking statements, though not all forward-looking statements necessarily contain these identifying words. These forward-looking statements are neither forecasts, promises nor guarantees, and are based on the beliefs of the Company’s management as well as assumptions made by and information currently available to the Company. Such statements reflect the current views of the Company with respect to future events and are subject to known and unknown risks, including business, regulatory, economic and competitive risks; uncertainties, contingencies and assumptions about the Company, including, without limitation, risks inherent in developing therapeutic products, the success, cost, and timing of the Company’s product candidate research and development activities and ongoing and planned preclinical studies and clinical trials, the success and timing of preclinical study and clinical trial results, the success of its clinical trial designs, the fact that successful preliminary preclinical study or clinical trial results may not result in future clinical trial successes and/or product approvals, trends in the industry, the legal and regulatory framework for the industry, the success of the Company’s engagement with the U.S. Food and Drug Administration ("FDA") and other regulatory agencies, the Company’s ability to obtain and maintain regulatory approval for its product candidates and FDA-approved products, the Company’s ability to receive approval for and commercialize its product candidates and FDA-approved products, the success of current and future agreements with third parties in connection with the development or commercialization of the Company's product candidates and FDA-approved products, the size and growth potential of the market for the Company’s product candidates and FDA-approved products, the Company’s ability to access additional funding upon achievement of portfolio milestones, the accuracy of the Company’s estimates regarding expenses, future revenue, future expenditures and needs for and ability to obtain additional financing, the Company’s ability to be a sustainable genetic medicine innovation engine and to build the next great genetic medicine company, the Company’s ability to obtain and maintain intellectual property protection for its product candidates and approved products, the competitive environment and clinical and therapeutic potential of the Company’s product candidates and FDA-approved products, the Company’s international expansion plans, potential adverse impacts due to the ongoing global COVID-19 pandemic such as delays in clinical trials, preclinical work, overall operations, regulatory review, manufacturing and supply chain interruptions, adverse effects on healthcare systems and disruption of the global economy, and those risks and uncertainties described under the heading “Risk Factors” in the Company’s most recent Annual Report on Form 10-K filed with the U.S. Securities and Exchange Commission ("SEC") and in subsequent filings made by the Company with the SEC, which are available on the SEC’s website at www.sec.gov. In light of these risks and uncertainties, many of which are beyond the Company’s control, the events or circumstances referred to in the forward-looking statements, express or implied, may not occur. The actual results may vary from the anticipated results and the variations may be material. You are cautioned not to place undue reliance on these forward-looking statements, which speak to the Company’s current beliefs and expectations only as of the date this Presentation is given. Except as required by law, the Company disclaims any intention or responsibility for updating or revising any forward-looking statements contained in this Presentation in the event of new information, future developments or otherwise. No representation is made as to the safety or effectiveness of the product candidates for the therapeutic use for which such product candidates are being studied.

Certain information contained in this Presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company’s own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this Presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, all of the market data included in this Presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while the Company believes its own internal research is reliable, such research has not been verified by any independent source.

The Company is the owner of various trademarks, trade names and service marks. Certain other trademarks, trade names and service marks appearing in this Presentation are the property of third parties. Solely for convenience, the trademarks and trade names in this Presentation are referred to without the ® and TM symbols, but such references should not be construed as any indicator that their respective owners will not assert, to the fullest extent under applicable law, their rights thereto.

This Presentation is for informational purposes only. This Presentation shall not constitute an offer to sell or the solicitation of an offer to buy these securities, nor shall there be any sale of these securities in any state or jurisdiction in which such offer, solicitation or sale would be unlawful prior to registration or qualification under the securities laws of any such state or jurisdiction.
BridgeBio Executive Summary

• BridgeBio Oncology is advancing 3 lead programs targeting the two most prominent oncogenes in human cancer (KRAS & PIK3CA): 1) Dual KRAS^{G12C}, 2) PI3Kα:RAS breaker, and 3) pan-KRAS.

• **Dual KRAS**^{G12C} inhibitor program has selected a Development Candidate (BBO-8520).
 - BBO-8520 is a highly potent dual inhibitor of KRAS^{G12C} with 30-300x higher potency than sotorasib in vitro and in vivo including differentiated activity in a PDX model.
 - Complete inhibition of the active and most prominent KRAS^{G12C} form should lead to deeper and longer lasting responses in patients.
 - BBO-8520’s IND-filling is projected for 2023.

• **PI3Kα:RAS breaker** is highly differentiated in that it is a) tumor selective, b) targets both mutant and wild-type PIK3CA, and c) does not induce hyperglycemia
 - Our compounds demonstrate robust efficacy in multiple mouse xenograft models including those with HER2/HER3 dependency, KRAS mutation and PIK3CA helical mutation
 - Our latest molecules produce dose-responsive pharmacodynamic data and display promising drug-like properties.
 - Biomarker data shows that Her2/Her3 dependency, PIK3CA helical mutations and KRAS^{G12X} mutations may be sensitive tumor types.
 - Development Candidate selection in 2023, and IND-filling in 2024

• **pan-KRAS** program targets KRAS^{G12D} and KRAS^{G12V} mutations present in a large percentage of colorectal, pancreatic and NSCLC tumors.
 - The Team has achieved in vivo target engagement and has identified leads with promising oral bioavailability.
 - The Team projects Development Candidate selection in the 2023.
BBIO pipeline attacks Ras mutant tumors from multiple angles

BBIO oncology programs address the 2 most mutated oncogenes in human cancer and potentially enable tolerable and simultaneous inhibition of the MAPK and PI3K signaling pathways.

- **G12C**
 - >25K patients
 - CRC, NSCLC, PC
 - Dual G12C inhibitor
 - PIK3CA:RAS Breaker

- **G12D**
 - >50K patients
 - CRC, NSCLC, PC
 - Pan-KRAS inhibitor
 - PIK3CA:RAS Breaker

- **G12V**
 - >50K patients
 - CRC, NSCLC, PC
 - Pan-KRAS Inhibitor
 - PIK3CA:RAS Breaker

- **PI3KCA**
 - >20K patients
 - BC, CRC, Endometrial
 - PIK3CA:RAS Breaker

Novel First-In-Class PI3Kα breaker has the potential to address PI3KCA helical mutations, half of KRAS\(^{G12X}\) mutations and nearly all HER family driven cancers.
We have a world class oncology team and strategic partners driving forward our targeted pipeline

Frank McCormick
Chairman of Oncology

Richard Scheller
Chairman of R&D

Eli Wallace
CSO, Oncology

Pedro Beltran
SVP, Oncology

- Partnership with the National RAS Initiative, including 60 of the world’s foremost academic RAS researchers
- Cutting edge RAS structural biology expertise
- Home to Sierra: the world’s 3rd fastest computing system
- Enables multi-microsecond molecular dynamics simulations of protein complexes, and highly efficient in silico docking simulations
BridgeBio is progressing multiple approaches against KRAS

- **Dual KRASG12C inhibitor** program has selected a Development Candidate (BBO-8520) with projected IND-filing 2023
 - Inhibits both KRASG12C GTP (active) and GDP (inactive) states; directly binds KRAS
 - Differentiates from KRASG12C GDP (inactive)-only inhibitors

- **PI3K\(\alpha\):RAS breaker** is highly differentiated in that it is a) tumor selective, b) targets both mutant and wild-type PIK3CA, and c) does not induce hyperglycemia
 - Projected Development Candidate selection in 2023
 - Blocks specific interaction between RAS and PI3Ka
 - RAS driver agnostic
 - Blocks PI3Ka / AKT effector signaling

- **pan-KRAS** program targets multiple KRAS mutants including KRASG12D and KRASG12V
 - Projected Development Candidate selection in the 2023
 - Potent pan-KRAS inhibitor
 - Directly binds KRAS
BBO-8520: A KRASG12C Dual Inhibitor

- PI3Kα:RAS Breaker
- Pan-KRAS program
Mutant KRAS is the most common oncogene in cancer – KRAS$^{\text{G12C}}$

- Lung cancer is the second most common cancer in the US with greater than 235K new cases and 130K deaths a year

- **KRAS$^{\text{G12C}}$ mutant found in ~15% of all NSCLC (~35K pts/yr)**

- Other common human cancers with KRAS mutations are colorectal and pancreatic adenocarcinomas with a combined 168K new cases a year in the US

- **KRAS$^{\text{G12D/G12V}}$ mutant found in 70% of pancreatic cancers (~43K pts/yr) and 25% of colorectal cancers (~53K pts/yr)**
KRAS^{G12C}-GDP inhibitors do not directly inhibit the active form of KRAS^{G12C} allowing for the emergence of resistance

Shokat’s discovery led to an explosion of KRAS^{G12C}-GDP inhibitors; led by sotorasib, these will change the treatment paradigm for people with KRAS^{G12C}-driven cancers.
Efficacy of KRASG12C-GDP inhibitors in the clinic is clearly suboptimal when compared to other driver-targeted therapies in the pathway

<table>
<thead>
<tr>
<th>KRASG12C-GDP inhibitors</th>
<th>RTK targeted agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sotorasib, Adagrasib, GDC-6036]</td>
<td>[Selpercatinib, Alectinib, Osimertinib, Capmatinib]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sotorasib</th>
<th>Adagrasib</th>
<th>GDC-6036</th>
<th>Selpercatinib</th>
<th>Alectinib</th>
<th>Osimertinib</th>
<th>Capmatinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>2L+ KRAS G12C NSCLC</td>
<td></td>
<td></td>
<td></td>
<td>2L+ RET Fusion+ NSCLC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORR</td>
<td>41%</td>
<td>43%</td>
<td>46%</td>
<td>64%</td>
<td>79%</td>
<td>77%</td>
<td>68%</td>
</tr>
<tr>
<td>mPFS (mo.)</td>
<td>6.3</td>
<td>6.5</td>
<td>{\textit{tbd}}</td>
<td>{\textit{tbd}}</td>
<td>25.7</td>
<td>18.9</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Phase 3 CODEBREAK 200 – PFS 5.6 months; ORR 28%

OrR, objective response rate; PFS, progression-free survival
Sources: Sotorasib data from registrational Ph2 CODEBREAK 100 & Ph3 CODEBREAK 200 results presented at 2022 EMSO meeting; Adagrasib data from KRYSTAL-1 results presented at 2022 ASCO Meeting; GDC-6036 data from 2022 WCLC meeting; Analog data taken from product labels
Alterations associated with clinical resistance to KRAS$^{\text{G12C}}$-GDP inhibitors

BBO-8520

<table>
<thead>
<tr>
<th>KRAS$^{\text{G12C}}$ amplification</th>
<th>Independent RTK activation</th>
<th>2$^\text{ry}$ in cis KRAS mutations</th>
<th>2$^\text{ry}$ KRAS mutation & lineage plasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>New KRAS$^{\text{G12C}}$ is GTP-bound</td>
<td>2$^\text{ry}$ mut BBIO IC$_{50}$</td>
<td>2$^\text{ry}$ mut BBIO IC$_{50}$</td>
<td>Non-NSCLC Transition</td>
</tr>
<tr>
<td>Fast adaptation</td>
<td>CRC Tx</td>
<td>ORR</td>
<td>G12Ci</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G12Ci + EGFRi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y96D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R68</td>
</tr>
</tbody>
</table>

BBIO’s dual KRAS$^{\text{G12C}}$ inhibitor can address 3 of the 4 most prevalent mechanisms of resistance to current clinical KRAS$^{\text{G12C}}$ inactive inhibitors.
A compound that inhibits both GTP (active) and GDP (inactive) forms of KRAS^G12C will be superior to one that only inhibits the latter.

GDPi does not achieve complete inhibition of “active” KRAS^G12C

<table>
<thead>
<tr>
<th>Drug (h)</th>
<th>KRAS-GTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDPi</td>
<td>0 4 24 48 72</td>
</tr>
</tbody>
</table>

Growth factors render GDPi completely inactive

<table>
<thead>
<tr>
<th>Drug (h)</th>
<th>KRAS-GTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTPi</td>
<td>0 4 24 48 72</td>
</tr>
</tbody>
</table>

KRAS^G12C prefers the GTP state: GTP levels are 10x GDP levels

- A mechanism of resistance was not identified for most NSCLC patients that became refractory to sotorasib**
- Among patients with identified resistance mechanisms to sotorasib, the majority were driven by RTK re-activation**

We believe efficacy of targeting of KRAS^G12C can be improved by targeting the oncogenic active GTP form.

*Ryan et al. Cell Reports 2022; **Li BT, et al. Journal of Clinical Oncology 40, no. 16_suppl (June 01, 2022) 102-102*
BBO-8520 completely modifies both GTP (active) and GDP (inactive) forms of KRAS^{G12C} and is exceptionally potent

<table>
<thead>
<tr>
<th>% modified</th>
<th>KRAS<sup>G12C</sup> GTP (active)</th>
<th>15’</th>
<th>100</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>60’</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>KRAS<sup>G12C</sup> GDP (inactive)</td>
<td>15’</td>
<td>91</td>
<td>80</td>
<td>73</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60’</td>
<td>100</td>
<td>82</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>KRAS<sup>G12C</sup> : RAF1 Effector Binding IC<sub>50</sub> (nM)</td>
<td>33</td>
<td>>100,000</td>
<td>20,000</td>
<td>4,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H358 pERK IC<sub>50</sub> @ 30’ (nM)</td>
<td>4</td>
<td>50</td>
<td>310</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H358 kinact/Ki (M*s)-1</td>
<td>43,000</td>
<td>776</td>
<td>1064</td>
<td>27,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- High degree of protein modification supports high affinity binding to GTP state
- Potent inhibition of effector binding and oncogenic signaling
- Superior kinact/Ki
Cysteine proteome selectivity and mechanism of action

Global cysteine proteomics shows high degree of selectivity for G12C

31P NMR peak shifts suggest that BBO-8520 stabilizes State 1 of active GTP-bound KRAS, which disrupts effector protein binding

p=0.000072

γ1 population increases from < 5% to > 85% upon binding
Targeting KRASG12C-GTP activity allows for rapid signal inhibition and overcomes RTK drive.

Rapid and complete inhibition of KRASG12C-GTP

GFs abundantly present in human tissues render GDP inhibitors inactive

<table>
<thead>
<tr>
<th>Compound</th>
<th>MALDI-TOF% GTP, 5min</th>
<th>Time (min) to IC$_{50}$</th>
<th>% of AMG510 Time to IC$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMG510</td>
<td>0</td>
<td>22</td>
<td>100</td>
</tr>
<tr>
<td>MRTX849</td>
<td>0</td>
<td>26</td>
<td>118</td>
</tr>
<tr>
<td>BBO-8520</td>
<td>94</td>
<td>3.0</td>
<td>14</td>
</tr>
</tbody>
</table>
Cellular data support hypothesis that targeting the GTP form yields greater potency and deeper responses.

10x increased potency is observed in viability assays.

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC₅₀ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H358</td>
<td>MIAPaCa-2</td>
</tr>
<tr>
<td>AMG510</td>
<td>2</td>
</tr>
<tr>
<td>BBO-8520</td>
<td>0.2</td>
</tr>
</tbody>
</table>

H358 Clonogenic Assay suggests GTPi may reduce development of resistance.

BBO-8520 retains single-digit nM activity against reported GDP-inhibitor active-site mutants, including G12C/R68S, G12C/Y96D, G12C/G13D, G12C/Q61H, and G12C/A59G.
BBO-8520 exhibits strong efficacy in KRASG12C models

High Potency
- MIA PaCa-2
 - Vehicle and BBO-8520 at 0.1 mg/kg, 0.3 mg/kg, and 3.0 mg/kg

Deep Efficacy
- H358
 - Vehicle, BBO-8520 at 0.3 mg/kg, 1.0 mg/kg, 3.0 mg/kg, and 10 mg/kg

Differentiated
- LUN055 (PDX) - NSCLC
 - Vehicle, AMG510 at 100 mg/kg, and BBO-8520 at 30 mg/kg

\textbf{10/10 CRs at 10 mg/kg}

- **ED_{50}**
 - Vehicle 0.13 mg/kg
 - BBO-8520 0.61 mg/kg

- **ED_{90}**
 - Vehicle 0.40 mg/kg
 - BBO-8520 1.6 mg/kg

- **EC_{50}**
 - Vehicle 4.6 nM
 - BBO-8520 14 nM

- **EC_{90}**
 - Vehicle 9.9 nM
 - BBO-8520 34 nM

BBO-8520 is efficacious in cell line and PDX models with high potency, deep efficacy, and differentiated activity

<table>
<thead>
<tr>
<th>Group (n=10)</th>
<th>TGI</th>
<th>Regression</th>
<th>FF AUC\textsubscript{0-24} (ng·hr/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBO-8520</td>
<td>100%</td>
<td>23% (7/10)</td>
<td>59</td>
</tr>
<tr>
<td>AMG510</td>
<td>71%</td>
<td>-</td>
<td>1563</td>
</tr>
</tbody>
</table>
BBO-8520: G12C Dual Inhibitor Development Candidate

- BBO-8520 is a potential “first-in-class” direct KRAS$^{G_{12C}}$ dual inhibitor
 - Completely modifies both GTP (active) and GDP (inactive) forms of KRAS$^{G_{12C}}$
 - Exceptionally potent and selective with superior kinact/Ki
 - Binding stabilizes GTP-bound KRAS$^{G_{12C}}$ in state 1 which cannot bind effectors
 - Overcomes RTK drive
 - Strong efficacy in KRAS$^{G_{12C}}$ models
- IND projected 2023
- Therapeutic opportunity in KRAS$^{G_{12C}}$ mutant NSCLC, CRC and other GI tumors in both GDP-KRAS$^{G_{12C}}$ inhibitor naïve and experienced patients
PI3Kα:RAS Breaker is a novel, potent and differentiated therapeutic approach that can deliver efficacy in multiple common tumor genotypes as monotherapy or in combination

- First-in-class molecular mechanism targeting the second most mutated oncogene in human cancer
- Molecular mechanism provides tumor selectivity and prevents well-known target liability (hyperglycemia)
- Proven activity in common tumor genotypes (KRASG12x, PIK3CA helical and HER2/HER3)
- Differentiated activity from Her2 and KRAS approved inhibitors (tucatinib, sotorasib, etc)

KYSE-410 CDX esophageal carcinoma - HER2amp KRASG12C

Tucatinib is a HER2 inhibitor, sotorasib is a KRAS-G12C inhibitor, alpelisib is a PI3Kα inhibitor. All groups dosed PO, QD, *p<0.05 RM ANOVA vs vehicle
Inhibiting the 2nd most mutated oncogene (PIK3CA) in human cancer has been limited by side effects of glucose metabolism

Solar-1 study – Hyperglycemia & Efficacy*

- High rate of dose modifications and interruptions (>30%) does not allow effective target coverage
- Adverse events are not conducive to combination studies
- Increased insulin secretion leads to increased pathway signaling and resistance

- Dose interruptions occurred in 66% versus 21% in placebo
- Dose reductions due to adverse events occurred in 55% versus 4.5% in placebo
- The most common adverse reactions were hyperglycemia (65%), diarrhea (58%), and rash (52%)

*Adapted from Rugo et al. Annals of Oncology 2020
Inhibiting PI3Kα activity by preventing its interaction with RAS provides a “tumor selective” mechanism that spares glucose metabolism

- PI3Kα kinase inhibitors block normal cell signaling resulting in dose-limiting hyperglycemia and insulin-driven resistance
- Inhibiting PI3Kα:RAS PPI with a “PI3Kα Breaker” should avoid hyperglycemia and insulin-driven resistance by specifically targeting tumor cells and may provide multiple therapeutic opportunities
- Mice with mutations in the RBD that impair the PI3Kα:RAS interaction block oncogene-driven NSCLC tumor growth in vivo and have no effect on glucose metabolism*

Normal Cells

- RTK
- PI3K
- AKT (PI3Kα)
- Glucose metabolism, survival

Tumor Cells

- RTK
- RAS
- PI3K
- AKT (PI3Kα)
- BBO Breaker
- Survival & proliferation

PPI, protein-protein interactions; RBD, RAS-binding domain

*Gupta et al. Cell 2007; Castellano et al. Cancer Cell 2013; Murillo et al., Cell Reports 2018
BridgeBio has designed potent and selective PI3Kα:RAS breakers

- PI3Kα:RAS breakers selectively bind to PI3Kα
- By ITC and SPR we observe
 - RAS binds to PI3Kα with ~10 μM affinity
 - Breakers binding to PI3Kα blocks its interaction with RAS
 - No binding affinity to RAS
- PI3Kα:RAS breakers do not affect kinase activity of PI3Kα

<table>
<thead>
<tr>
<th>BBO</th>
<th>Alpelisib</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAKT (IC50, nM)</td>
<td>34</td>
</tr>
<tr>
<td>Cell Viability (nM)</td>
<td>67</td>
</tr>
</tbody>
</table>
One third of all cancer cell lines depend on PI3Kα:RAS interaction for activation of AKT signaling

- 105/282 (37%) of screened cell lines are responders
- Responders include:
 - 29/50 (58%) KRASG12X mutant
 - 18/19 (94%) PIKCA helical mutant
 - 16/21 (76%) HER2 amp

PIK3CA helical mutants are highly sensitive

$pAKT (IC_{50} \text{ nM})$

100nM = “Responder” threshold

Mutations Responders vs Non-Responders

mutation

<table>
<thead>
<tr>
<th>mutation</th>
<th>Mut</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAKT nM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BBO is orally bioavailable and achieves near complete inhibition of signaling in tumors at 100 mg/kg without risk of hyperglycemia.

BBO Dose Ranging Mouse PK

- IV 3 mg/kg
- PO 100 mg/kg
- PO 7 mg/kg
- PO 30 mg/kg

BBO Dose Response PD

Full target inhibition achieved at 100 mg/kg

BT474 CDX

(4 hours post BBO or alpelisib dose)

- % pAKT: BBO
- % pAKT: alpelisib
- PK

Blood Glucose (mg/dL)

- Vehicle
- Alpelisib, 50 mg/kg
- BBO, 300 mg/kg

Insulin (ng/mL)

- Vehicle
- Alpelisib
- BBO

Unlike alpelisib, Breaker MOA does not affect glucose metabolism.

1. One-way ANOVA with Dunnett’s test vs vehicle; *p<0.01, **p<0.001
2. Top: One-way ANOVA with Dunnett’s test vs vehicle, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, Bottom: One-way ANOVA with Tukey’s multiple comparisons test vs all other groups : *p<0.0001
PI3Kα breakers are efficacious in xenograft models

KYSE-410 CDX
- KRAS^{G12C}
- HER2^{amp}

GP2d CDX
- KRAS^{G12D}
- PIK3CA^{H1047L}

SNU-601 CDX
- KRAS^{G12D}
- PIK3CA^{E542K}

SNU-16 CDX
- KRAS^{G12D}

Efficacy is observed in models with KRAS^{G12X} mutations, with or without PIK3CA mutation

All groups dosed PO, QD, *p<0.0005 RM ANOVA vs vehicle
BridgeBio has designed potent and selective PI3Kα:RAS breakers

- Potential first-in-class opportunity
 - Novel mechanism of action: PI3Kα breakers selectively block RAS activation of PI3Kα
 - Exhibits potent inhibition of AKT activation in KRAS^{G12x}, PIK3CA helical mutations and HER family driven populations
 - Potent efficacy in multiple models without hyperglycemia
- Development candidate projected 2023
- Multiple opportunities as monotherapy and in combination in large patient populations
Agenda

- BBO-8520: A KRASG12C Dual Inhibitor
- PI3Kα:RAS Breaker
- Pan-KRAS program
Mutant KRAS is the most common oncogene in cancer – pan KRAS

- Lung cancer is the second most common cancer in the US with greater than 235K new cases and 130K deaths a year

- KRASG12C mutant found in ~15% of all NSCLC (~35K pts/yr)

- Other common human cancers with KRAS mutations are colorectal and pancreatic adenocarcinomas with a combined 168K new cases a year in the US

- KRAS$^{G12D/G12V}$ mutant found in 70% of pancreatic cancers (~43K pts/yr) and 25% of colorectal cancers (~53K pts/yr)

Figure from: Moore, Rosenberg, McCormick, Malek Nat Rev Drug Disc 2020
Pan-KRAS program: current lead molecules

- Recent progress has identified molecules with the right potency and bioavailability

<table>
<thead>
<tr>
<th>PPI: KRAS/RAF1 effector IC_{50} (nM)</th>
<th>BBO-a</th>
<th>BBO-b</th>
</tr>
</thead>
<tbody>
<tr>
<td>G12D</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>G12V</td>
<td>430</td>
<td>270</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pERK: HTRF IC_{50} (nM)</th>
<th>BBO-a</th>
<th>BBO-b</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP2D (G12D) @ 1h</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>SW620 (G12V) @ 4 h</td>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mouse PK (IV ER % / PO %F)</th>
<th>BBO-a</th>
<th>BBO-b</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 / 6.9 (10 mpk)</td>
<td></td>
<td>44 / 34 (10 mpk)</td>
</tr>
</tbody>
</table>
Potent inhibitory activity against multiple KRAS-mutant models *in vitro*

<table>
<thead>
<tr>
<th>KRAS variant</th>
<th>BBO-b EC(_{50}) (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pERK</td>
</tr>
<tr>
<td>G12D</td>
<td>6.7</td>
</tr>
<tr>
<td>G12V</td>
<td>2.7</td>
</tr>
<tr>
<td>G12C</td>
<td>11.0</td>
</tr>
<tr>
<td>G12S</td>
<td>126</td>
</tr>
<tr>
<td>G13D</td>
<td>37.1</td>
</tr>
<tr>
<td>G12A</td>
<td>406</td>
</tr>
<tr>
<td>BRAF(^{V600E})</td>
<td>>10 uM</td>
</tr>
</tbody>
</table>

We have identified leads with strong *in vivo* target engagement which are progressing into efficacy studies.
Pan-KRAS: Lead optimization progressing towards a development candidate

- Potent activity against multiple KRAS mutants
- Selective for KRAS over H- and NRAS
- Potent PD and good mouse oral bioavailability
- Development candidate projected 2023
BridgeBio is progressing multiple approaches against KRAS

- **Dual KRAS\(^{G12c}\) inhibitor** program has selected a Development Candidate (BBO-8520) with projected IND-filing 2023

- **PI3K\(\alpha\):RAS breaker** is highly differentiated in that it is a) tumor selective, b) targets both mutant and wild-type PIK3CA, and c) does not induce hyperglycemia

- Projected Development Candidate selection in 2023

- **pan-KRAS** program targets multiple KRAS mutants including KRAS\(^{G12D}\) and KRAS\(^{G12V}\)

- Projected Development Candidate selection in the 2023