bridgebio

COMPANY PRESENTATION

160

June 2020

General Disclaimer

This Presentation has been prepared solely for informational purposes intended to facilitate discussions with potential investors regarding the offering of the Company's securities. This Presentation shall not constitute an offer to sell or the solicitation of an offer to buy any securities nor shall there be any sales of securities in any jurisdiction where such offer, solicitation or sale would be unlawful. No offering of securities shall be made except by means of a written offering memorandum via an exemption from the registration requirements of the U.S. Securities Act of 1933, as amended (the "Securities Act"). This Presentation is strictly confidential and is being furnished solely in reliance on applicable exemptions from the registration requirements under the Securities Act. The offered securities have not and will not be registered under the Securities Act or any state securities laws, and may not be offered or sold within the United States, or to or for the account or benefit of U.S. person, unless an exemption from the registration requirements of the Securities Act is available. The Company intends to offer and sell the securities in reliance on the exemption from registration provided by Rule 144A under the Securities Act. Under Rule 144A the securities may only be sold to Qualified Institutional Buyers ("QIBs"), as defined in Rule 144A under the rule. Any purchaser of such securities in the United States, or to or for the account of U.S. persons, will be deemed to have made certain representations and acknowledgments, including, without limitation, that the purchaser is a QIB. The securities are being offered by the Company pursuant to a preliminary offering memorandum and supplement thereto will specifically state that you may rely on the information contained therein (but only as of the date of such preliminary offering memorandum or supplement thereto.) This presentation does not purport to be all inclusive or contain all of the information that a prospective investor would need to make an in

Forward-Looking Statements

Statements in this Presentation that are not statements of historical fact are forward-looking statements. Such forward-looking statements include, without limitation, statements regarding our research and clinical development plans, expected manufacturing capabilities, strategy, regulatory matters, market size and opportunity, future financial position, future revenue, projected costs, prospects, plans, objectives of management, and the Company's ability to complete certain milestones. Words such as "believe," "anticipate," "intend," "will," "may," "goal," "potential" and similar expressions are intended to identify forward-looking statements, though not all forward-looking statements necessarily contain these identifying words. These forward-looking statements are based on the beliefs of the Company's management as well as assumptions made by and information currently available to the Company. Such statements reflect the current views of the Company, including, without limitation, risks inherent in developing therapeutic products, future results from the Company's ongoing and planned preclinical studies and clinical trials, the Company's ability to obtain adequate financing to fund its preclinical studies and planned clinical trials and other expenses, trends in the industry, the legal and regulatory framework for the industry and future expenditures. In light of these risks and uncertainties, the events or circumstances referred to in the forward-looking statements may not occur. The actual results may vary from the anticipated results and the variations may be material. These forward-looking statements have been made are correct or exhaustive or, in the case of the assumptions, fully stated in the Presentation. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date this Presentation is given. This Presentation discusses product candidates that are under preclinical study or clinical trial and which have not yet been approved for marketing by the U.

Certain information contained in this Presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this Presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, all of the market data included in this Presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while the Company believes its own internal research is reliable, such research has not been verified by any independent source.

We are building a leading genetic disease company

Core attributes...

- 1. Distinctive early stage asset selection
- 2. Experienced, product-focused R&D team
- 3. Efficient corporate structure
- 4. The willingness and scale to fail
- 5. Focus at the level of individual diseases and assets

...applied many times...

eidos a bridgebio company

MYOKARDIA

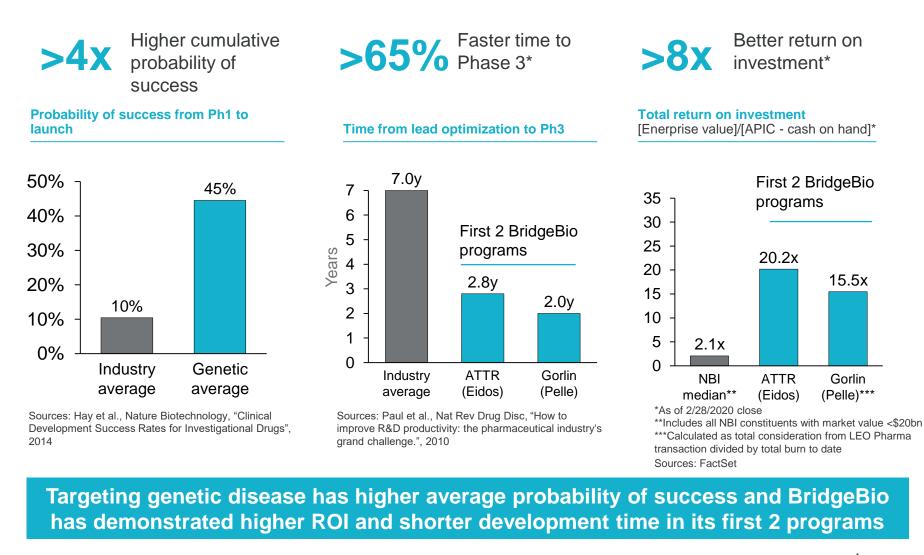
+ 18 BridgeBio programs ...a pipeline of potential blockbusters and synthetic blockbusters*

- Two potential \$1B+ franchises in Phase 2 or later
- Two planned NDA submissions this year
- Several early-stage potentially large franchises
 - KRAS
 - GPX4
 - Congenital adrenal hyperplasia
 - Leber's hereditary optic neuropathy
- Multiple IND submissions planned in 2020
- Four new programs announced in January 2020

*Blockbuster defined as program with \$1bn+ opportunity

BridgeBio is led by a world-class team of experienced drug developers

We rely on some of the top R&D minds in this industry to select assets...


...and put them in the hands of one of the most productive groups of R&D operators in the industry

Uma Sinha, PhD Chief Scientific Officer	CBTO PORTOLA PORTOLA	(eptifibatide) Injection INTEGRILIN Examining Toolwards In Record for Included - 200 (voxe lotor) Included - 200
Eli Wallace, PhD Chief Scientific Officer in Residence, Oncology	REPERSION Peloton Therapeutics	(binimetinib) is ng takets PT2997 (HIF2αi, Ph3)
Robert Zamboni, PhD Chemistry	Struck Frosst	SINGULAIR [®] ARCOXIA (montelukasi, MSD) (rofecoxib, MSD)

Together, our R&D team is responsible for 100+ INDs and 20+ approved products

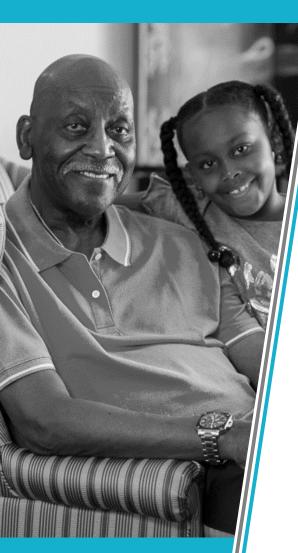
We believe genetic disease drug discovery is lower risk, faster, with potentially higher returns than traditional drug discovery

	Criteria	Relevance
1	Fligh probability of success	 Historically higher probability of success for genetic disease drugs BridgeBio's early programs have outperformed historical probabilities
2	Number of programs	 We find great science and unlock its potential for patients Always searching for the next PellePharm or Eidos Scale allows for objective assessment and failure
3	Capital efficiency	 Generate value by making each program ROI-positive Driven by judicious use of capital at the high-risk preclinical stages

Our pipeline of 20+ development programs spans multiple therapeutic areas and drug modalities

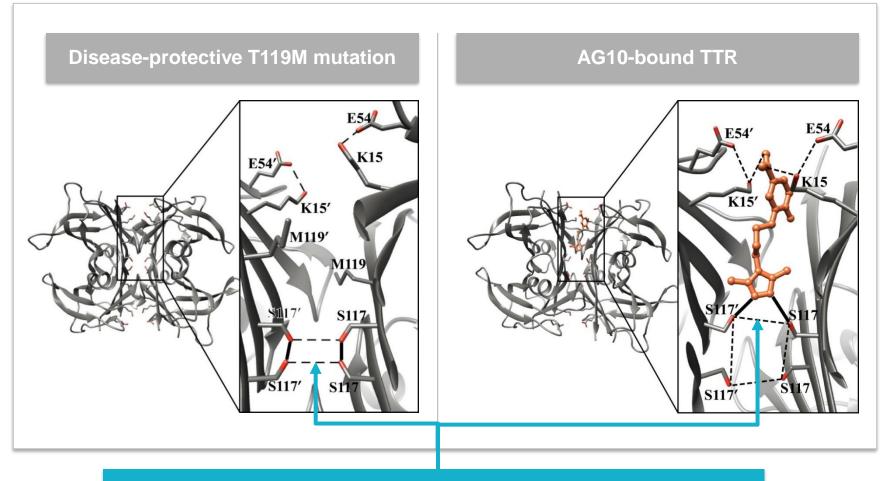
Small mo	blecule 🗍 To	opical small molecule	Biologics DOM Gene th	nerapy		= ł	Key value	e drivers over	the next 18 mo	nths
Portfolio	D ag waa 1	Dura masharian	Discoss	Patient	Pre-Clinical		Clinical			
segment	Program ¹	Drug mechanism	Diseases	pop. (US+EU)	Modality	Discovery	IND- enabling	Phase1	Phase 2	Phase 3
	AG10	TTR stabilizer	ATTR-CM	>400K	ϕ					
Mendelian	BBP-870	cPMP replacement	MoCD type A	100	ϕ				1	ND
	Infigratinib	Low-dose FGFR1-3i	Achondroplasia ³	55K	ϕ					
	Encaleret	CaSR antagonist	ADH1 / HP	12K / 200	κφ					
	Zuretinol	Synthetic retinoid	IRD (RPE65 or LRAT)	ЗK	ϕ					
	BBP-418	Glycosylation substrate	LGMD2i	7K	ϕ					
	BBP-711	GO1 inhibitor	PH1 / FSF	5K / 1.5M	ϕ					-
	BBP-671	PanK activator	PKAN / OA	7K	ϕ				 	
	BBP-761	Succinate prodrug	LHON	20K	ϕ					
	BBP-472	ΡΙ3Κβί	PTEN autism	120K	ϕ					
Genetic	Patidegib ²	Topical SMOi	Gorlin / BCC	120K	and the second se				1	
Dermatology	BBP-589	Recombinant COL7	RDEB	1.5K	*					
<u> </u>	BBP-681	Topical PI3Kαi	VM / LM	117K						-
	BBP-561	Topical KLK 5/7i	Netherton	11K					 	
Targeted	Infigratinib	FGFR1-3i	FGFR+ tumors	37K	ϕ					
Oncology بر	BBP-398	SHP2i	Multiple tumors	>500K	ϕ					
1900	BBP-454	Pan-mutant KRASi	KRAS+ tumors	>500K	ϕ					
Lest	BBP-954	GPX4i	Multiple tumors	>500K	ϕ					
ene Therapy	BBP-631	21-OH gene therapy	САН	>75K	MM					1
FILME	BBP-812	ASPA gene therapy	Canavan	1K	DADA					
	BBP-815	TMC1 gene therapy	Genetic hearing loss	10K	MM					

¹ Each of our programs is housed in a separate subsidiary; ²We are party to an option agreement pursuant to which LEO Pharma A/S has been granted an exclusive, irrevocable option to acquire PellePharm, including the BBP-009 program. If the option is exercised by LEO Pharma A/S, we will no longer have rights to develop and commercialize BBP-009. ³Protocol accepted by Australian local ethics committed, IND submission to FDA expected 2020.



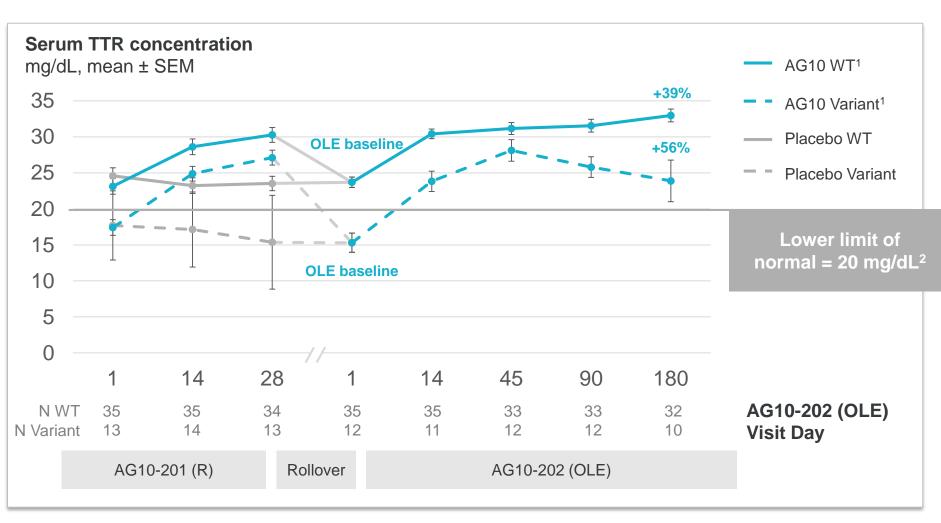
Four key value drivers over the next 18 months

Program	Population (US+EU)	Status	Upcoming event(s)
 AG10: TTR stabilizer for ATTR Most potent TTR stabilizer; MOA mimics protective genetic variant Data to date suggest potential best-in-class clinical profile 	>400K	Enrolling ATTR-CM Ph3	 Complete enrollment 1H21 Data 1H22
 Low-dose infigratinib (FGFRi) for achondroplasia Only agent designed to directly target genetic cause of ACH Differentiated pre-clinical data on cranial and spinal defects 	55K	Enrolling Ph2 study	Dose first child 2020Data 2021
 Gene therapy for congenital adrenal hyperplasia (BBP-631) One of largest potential gene therapy markets Only approach capable driving endogenous cortisol production 	>75K	GLP tox ongoing	File IND 2020Data 2021
 Encaleret: CaSR antagonist for autosomal dominant hypocalcemia type 1 (ADH1) Directly targets ADH1 genetic driver; potentially first-in-class 	12K	Ph2-ready	 Dose first patient 2020 Data 2021


AG10 for TTR amyloidosis (Eidos)

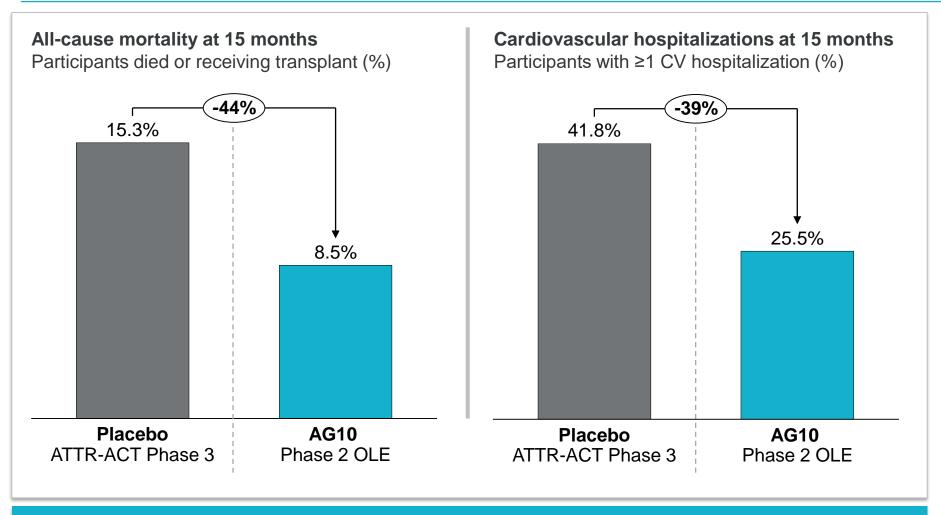
Art, ATTR-CM patient

- Addressing large and growing need in ATTR, a fatal disease affecting >400K patients
- Targeting the disease at its source by stabilizing TTR, a genetic and clinically validated mechanism
- Advancing AG10, a potential best-in-class drug that mimics naturally occurring rescue mutation
- Phase 2 open label extension study suggests potential to reduce mortality and cardiovascular hospitalizations at 15 months
- Executing Phase 3 study in ATTR-CM with topline data expected in 2022


AG10 structurally mimics disease-protective mutation by hyper-stabilizing TTR

Strong inter-monomer H-bonds observed via X-ray crystallography Unique binding mode vs other stabilizers

Serum TTR levels, a prognostic indicator of survival, increased upon AG10 treatment and were maintained throughout Ph 2 study


1 400mg and 800mg BID AG10 groups pooled during randomized portion

2 Defined as the lower limit of the reference interval for the serum prealbumin (TTR) clinical laboratory assay

bridgebio

Source: Judge, DP et al. American Heart Association Scientific Sessions 2019

Deaths and CV hospitalizations reported in AG10 Phase 2 OLE were lower than in placebo-treated ATTR-ACT participants

Phase 3 ATTRibute study expected to complete enrollment in 1H21

1 Based on routine adverse event reporting

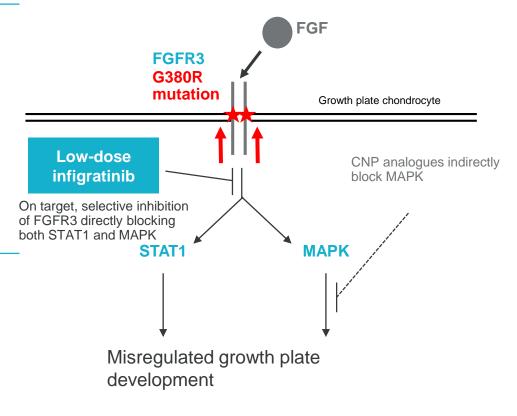
Note: These data are based on a cross-trial comparison and not a randomized clinical trial. As a result, the values shown may not be directly comparable Source: Judge, DP et al. American Heart Association Scientific Sessions 2019

Low-dose FGFR inhibitor (infigratinib) for achondroplasia

Claudia, child with achondroplasia

Achondroplasia overview:

- Prevalence: 55,000 (US+EU) one of the most common genetic conditions
- Genetic driver: FGFR3 activation
- Pathophysiology: Up regulation of STAT1 and MAPK in the growth plate cause cranial, spinal, and stature symptoms


Features of a potential best-in-class medicine for achondroplasia:

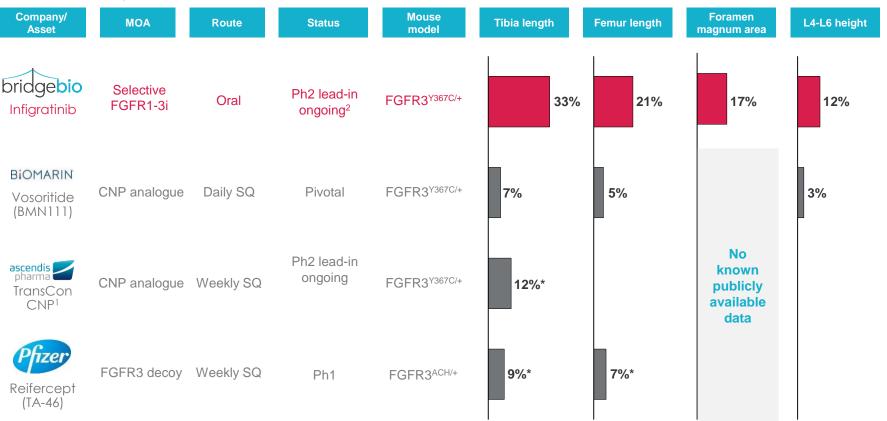
- Direct targeting of FGFR3 and normalization both STAT1 and MAPK signaling pathways
- Potential to address all drivers of symptoms, including cranial, spinal and stature issues
- Oral dosing, the most convenient solution for children with achondroplasia and their families

Potential best-in-class approach to treating achondroplasia directly at its genetic source

ACH FGFR3 gain-of-function mutation causes:

- 2-3x over activation of the receptor
- Up-regulation of downstream pathways STAT1 and MAPK
- Aberrant growth plate development causes cranial, spinal, and stature symptoms

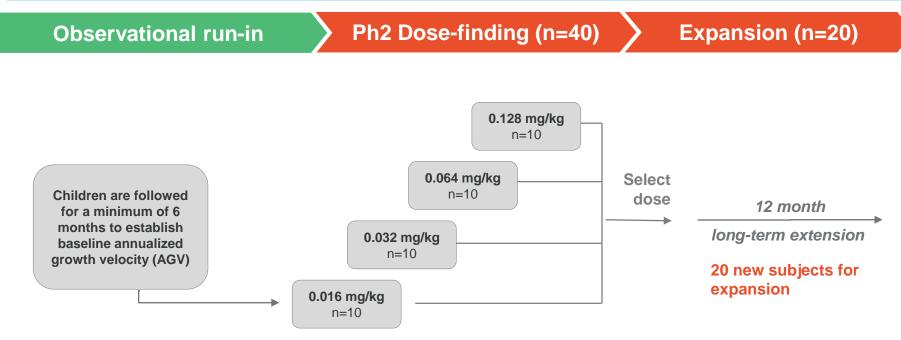
Low-dose infigratinib has the potential to:


- Directly inhibit the causal gain-of-function mutation in FGFR3
- Normalize both the STAT1 and MAPK signaling pathways
- Demonstrate clear macro and microscopic improvements on foramen magnum, intervertebral discs, and long bones in validated preclinical model

Source: Ornitz DM et al. Developmental Dynamic 2017; Richette Joint Bone Spine 2007; Unger Curr Osteoporos Rep 2017, Hoover-Fong Am J Gen Med 2017

Low-dose infigratinib showed potential best in-class preclinical profile in validated achondroplasia mouse model

Preclinical data from infigratinib and other investigational achondroplasia therapies



Percent increase compared to non-treated mouse

Source: Komla-Ebri et al. J Clin Inv 2016, Lorget et al. Am J Hum Genet 2012, Garcia et al. Science Trans Med 2013, Breinholt ENDO 2017 Note: subcutaneous doses, percent increase compared to vehicle treated FGFR3^{Y367C/+}, FGFR3^{ACH/+} mouse as noted in "Mouse model" columns Infigratinib treatment with 2mg/kg subcutaneous dose

¹Based on vosoritide continuous infusion; *Value estimated using Digitizelt. ²Protocol submitted to Australian local ethics committed, IND submission to FDA expected 2020.

The PROPEL clinical program is enrolling with data expected in 2021

Key inclusion criteria

- Children 2.5 10 years old
- Clinical and molecular ACH diagnosis

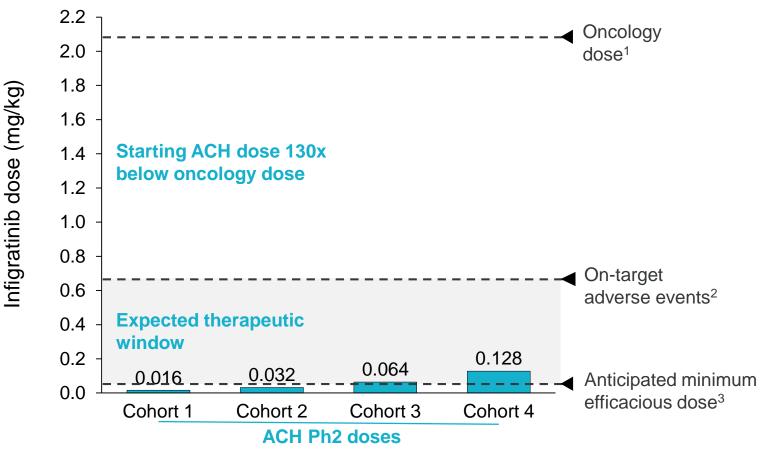
Primary objectives

 Baseline annualized growth velocity (AGV)

Primary objectives

- Identify safe therapeutic dose for expansion / pivotal study
- Safety and tolerability
- Change from baseline in AGV

Primary objectives


Long-term safety and efficacy

We have a wide anticipated therapeutic index in achondroplasia

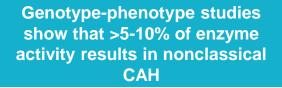
Infigratinib has been tested in >700 humans in our oncology program, providing significant data on PK, tolerability and safety

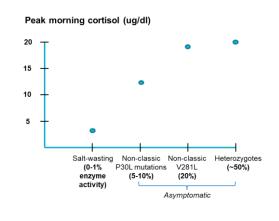
Most common and dose-limiting side effect is phosphorus elevation (on-target through FGFR1 inhibition), which occurs significantly above our planned achondroplasia doses

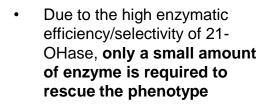
¹Based on 125mg dose and 60kg adult; ²Based on estimated TD₅₀ at 40mg and 60kg adult; ³Based on PK modeling and allometric scaling from animal models

Gene therapy for congenital adrenal hyperplasia (CAH)

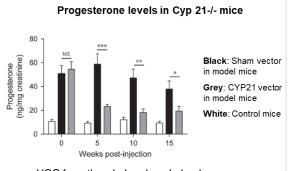
Maris, child with CAH

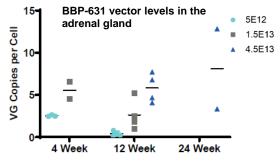

Program overview:

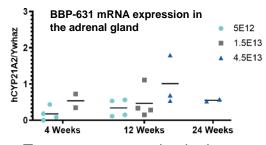

- Prevalence: 75,000 (US+EU) One of the largest known AAV gene therapy markets
- Genetic driver: 21-hydroxylase inactivation
- Pathophysiology: Inability to produce cortisol causes need for supraphysiologic doses of synthetic steroids, 3x increase mortality risk, hirsutism, Cushingoid symptoms


We believe CAH is an ideal indication for AAV gene therapy:

- Low threshold to correct phenotype, validated by human clinical genetics
- Only approach designed to induce endogenous cortisol production, potentially allowing steroid withdrawal
- Durable transgene delivery to the adrenal gland of NHP with IV dosing of our construct
- Preliminary Ph1/2 data anticipated in 2021


CAH: NHP study showed durable transgene expression; 5-10% of WT enzyme may be sufficient for clinical impact


Mouse studies show a VGC of only 0.13 at 18 wks was sufficient for phenotypic correction


VGC from the whole adrenal gland was 0.13 at wk 18

 At 15 weeks in treated mice, progesterone (the key substrate of 210Hase in mice) was significantly reduced vs untreated mice

NHP studies show sustained VGC and RNA out to 6 months

Mean vector genome copies per cell appear stable at 24 wks

Transgene expression is dosedependent and stable out at 24 wks

Source Perdomini, Gene Therapy 2017; ESGCT 2019

Encaleret for disorders of calcium homeostasis, including autosomal dominant hypocalcemia type 1 (ADH1)

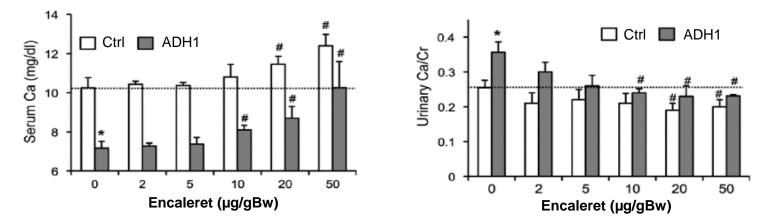
Targets hypocalcemia/hypercalciuria by selectively antagonizing the calcium-sensing receptor (CaSR)

 Opportunity identified in collaboration with global experts at the NIH

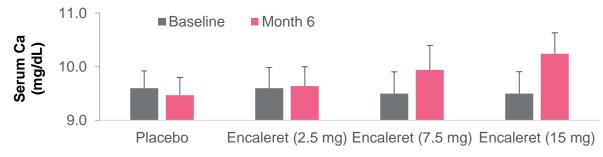
Potential 1st in class CaSR antagonist with differentiated profile for ADH1 and hypoparathyroidism

- Initial development in genetically-defined population of ADH1, driven by CaSR activating mutations (~12K carriers in US)
- Potential for expansion into post-surgical chronic hypoparathyroidism (~200K patients in US & EU)

Prior clinical experience enables accelerated development

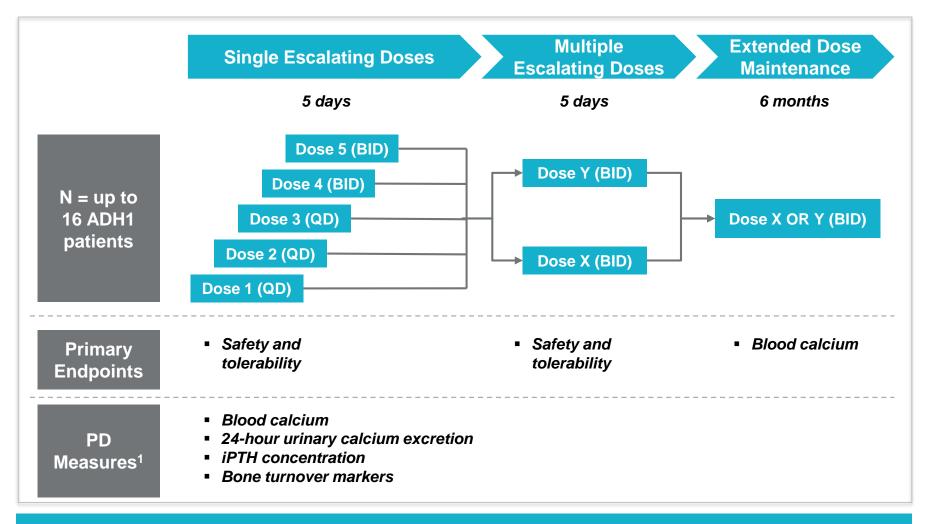

- Well tolerated in >1,200 human subjects and increased serum calcium in a dose-dependent manner
- Phase 2 study in ADH1 planned to initiate in 2020 with proofof-concept data anticipated in 2021

Encaleret targets ADH1 at its source by normalizing hyperactive calcium sensing receptor


Rationale for calcilytic use in ADH1

- ADH1 is caused by activating mutations in the CaSR leading to hypocalcemia and hypercalciuria
- Prior generation calcilytic partially addressed ADH1 phenotype despite limited exposure¹

Encaleret normalized serum and urine calcium in a mouse model of ADH1²


Encaleret increased serum calcium in clinical trials in patients with osteoporosis³

Source: 1 Roberts, M.S., et al. J Bone & Min 2019; 2 Dong B., et al. J Bone & Min 2015; 3 Data on file

Phase 2b, open-label dose-ranging study will evaluate safety, tolerability, and efficacy of encaleret in ADH1

Top-line, proof-of-concept results of encaleret in ADH1 are expected in 2021

¹ Pharmacodynamic measurements to be collected through duration of study.

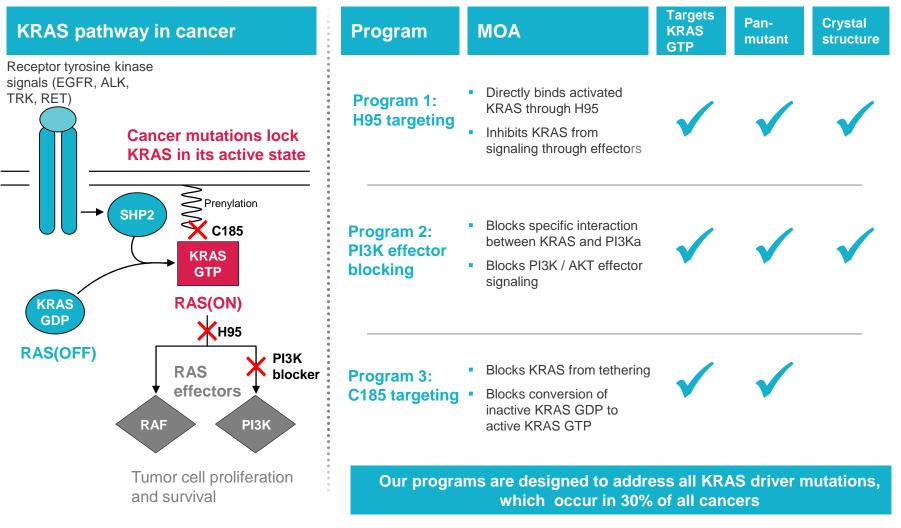
Early oncology portfolio

Basia, pancreatic cancer patient

World-class oncology team drives our discovery and development

- Eli Wallace, CSO Oncology
- Frank McCormick, Chairman of Oncology
- Richard Scheller, Chairman of R&D

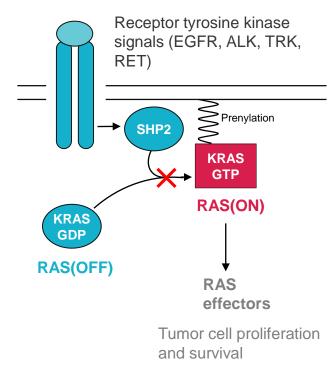
Our KRAS platform has produced 3 pan-mutant programs:


- 1 H95 approach, designed to block effector signaling
- 2 KRAS:PI3K blocker approach, designed to block PI3K effector signaling
- 3 C185 approach, designed to block KRAS prenylation and activation

We are also prosecuting novel targets with extensive academic validation

- **SHP2i** for multiple tumors (10+ recent papers in *Nature, Science, Nature Medicine*)
- GPX4i for multiple tumors (10+ recent papers in Nature, Cell, Science, Cancer Cell)

Program	МОА	Disease	Stage	Next anticipated update
Pan-mutant KRAS inhibitors	(1) H95 approach (2) PI3K blocker (3) C185 approach	KRAS+ cancer	Discovery	Clinical candidate nomination
SHP2 inhibitor	Allosteric inhibitor	Multiple tumors	Pre-IND	IND submission in 2020
GPX4 inhibitor	Covalent inhibitor	Multiple tumors	Discovery	Clinical candidate nomination


KRAS: multiple shots on goal with our pan-mutant inhibitor programs – each with a unique MOA targeting a novel pocket

SHP2: Our compound is expected to enter the clinic in 2020

- Our compound traps SHP2 in the inactive state, thereby blocking downstream MAPK signaling
- In collaboration with MD Anderson, optimized our SHP2i for use in combination (no QTC prolongation or hypertension)
- Well tolerated in 28d GLP-tox studies MTD not reached in dogs (25mpk) or rats (100mpk)
- First SHP2 inhibitor clinical data, (RVMD Q1 2020) demonstrates monotherapy antitumor activity*

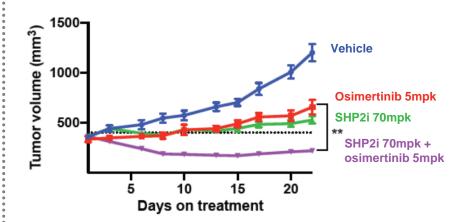
Preclinical SHP2i data

In vitro properties	BBIO	RVMD*
pERK IC ₅₀ (nM) cellular assay	<40	<40
hERG Patch clamp IC ₅₀ (μ M)	>100	?
Monotherapy anti-tumor activ	vity	
KRASG12C xenograft	\checkmark	\checkmark
EGFR mutant xenograft	\checkmark	\checkmark
Combination enhanced anti-te	umor activity	
G12Ci	√(AMG 510)	√(MRTX 849)
MEKi	√(trametinib)	√(cobimetinib)
EGFRi osimertinib	\checkmark	\checkmark
Based in the large file of second	and the second state of the second	

Preclinical profile demonstrates activity in-line with SHP2i class and potential for better tolerability

Source: Data on file, *Revolution Medicines S-1

SHP2: Preclinical rationale for development in NSCLC

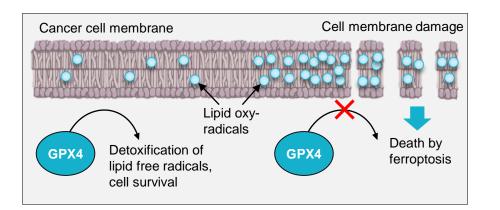

NSCLC: Deep and durable tumor regressions in combination with market-leading EGFRi osimertinib

1500 Dosing stopped Tumor volume (mm³) Vehicle SHP2i Osimertinib 70mpk 1000 · 5mpk 500 SHP2i 70mpk + osimertinib 5mpk 20 40 60 80 Days on treatment

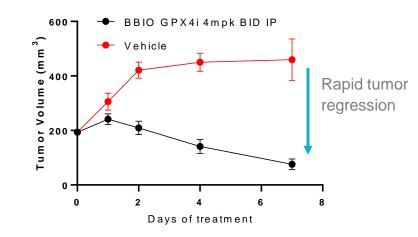
EGFR+ NSLC model (HCC827)

- Our compound + osimertinib deep tumor regression
- Effect was durable at least 40d after dosing stopped

EGFR+, osimertinib-resistant NSLC model (HCC827-ER, METamp)


- Our compound + osimertinib produced regression in an osimertinib resistant model
- Provides rationale for testing in osimertinib failures

GPX4: Potential first-in-class therapy for a novel cancer target


GPX4 is the key negative regulator of ferroptosis

- GPX4 neutralizes toxic free radicals at the lipid membrane, protecting cells from death (ferroptosis)
- We are developing covalent inhibitors of GPX4 designed to induce ferroptosis in cancer cells
- Recent high profile publications provide preclinical in vivo rationale for monotherapy and combinations with IO, kinase inhibitors and chemotherapy

In vivo monotherapy activity in RCC xeno model

Synergy with targeted therapies and immunotherapy using in vitro models

Optimization of oral lead compounds ongoing

Source: Data on file

Three late-stage programs continue to progress toward the market

Program	2019	2020	2021
Fosdenopterin: cPMP replacement for MoCD type A	✓ Initiate rolling NDA submission	Complete rolling NDA submission	FDA approval / launch
			Potential PRV sale
Infigratinib: FGFRi for 2L cholangiocarcinoma with FGFR2 fusion	✓ Complete enrollment in Ph2 pivotal study	Complete NDA submission	FDA approval / launch
Topical patidegib: SMOi for Gorlin syndrome	✓ Complete enrollment in Ph3 study	Last patient last visit	Topline data
			Potential payment from Leo

We are building a track record of late-stage clinical and regulatory execution

Multiple catalysts anticipated in 2020-2021

ESTIMATED 2020 2021 **1H 2H** FY New program announcements Low-dose FGFRi for TTR stabilizer for ATTR: Complete achondroplasia: Begin dosing Ph2 enrollment of ATTR-CM Ph3 FGFRi for cancer: FPI Ph3 adjuvant urothelial carcinoma cPMP for MoCD type A: Complete Topical SMOi for Gorlin: Topline NDA submission Ph3 data study \checkmark FGFRi for cancer: FPI Ph2 FGFR CaSR antagonist for ADH1: Dose Low-dose FGFRi for first patient in Ph2 study achondroplasia: Ph2 PoC data fusion tumor agnostic Ph2 study EGERi for cancer: Pivotal 2L CCA CAH gene therapy: Ph1/2 PoC data data FGFRi for cancer: Submit NDA for CaSR antagonist for ADH1: Ph2 POC data 2L CCA New IND filings FGFRi for cancer: 2L CCA approval and launch cPMP for MoCD type A: Approval and launch Recombinant COL7 for RDEB: Topline Ph1/2 data

\$928mn in cash and equivalents as of 1Q20 expected to provide runway into 2022

