

Long-term safety and efficacy of AG10 in ATTR-CM:

Phase 2 Open Label Extension

Daniel P. Judge, M.D.

Professor of Medicine/Cardiology

Medical University of South Carolina

Transthyretin (TTR) amyloidosis cardiomyopathy (ATTR-CM) is an emerging diagnostic and treatment priority

ATTR is a systemic disease **Central nervous system** Ocular Cardiomyopathy **Nephropathy** Gastrointestinal **Carpal tunnel** Wild-type or **Peripheral neuropathy** familial

References: 1. Gonzalez-Lopez E. et al. Eur Heart J 2015. 2. Mohammed SF, et al. JACC: Heart Failure 2014. 3. Horvath SA, et al. Circulation 2018. 4. Sperry BW et al. JACC 2018. 5. Damy T, et al. Eur Heart J 2015. 6. Sant'Anna R, et al. Sci Rep. 2017;7(44709):1-15. 7. Coelho T, et al. Neuromuscul Disord. 1996;6(1):S20.

Growing awareness of the spectrum of ATTR:

13-19% of heart failure with preserved ejection fraction^{1,2,3}

7.1% of idiopathic bilateral carpal tunnel release⁴

5% of suspected hypertrophic cardiomyopathy*5

ATTR pathogenesis and therapeutic strategies:

- Instability of the TTR tetramer promotes dissociation and aggregation as amyloid plaques⁶
- Available therapies include TTR tetramer stabilizers, TTR knockdown agents (neuropathy only), and transplant
- Stabilizing mutation (T119M) protects against ATTR and was the basis for development of AG10⁷

^{*}Mutant TTR only, ^{99m}Tc=Technetium-99m; TAVR=transcatheter aortic valve replacement.

AG10 Phase 2 Study Objectives and Status

SCHEMATIC OF AG10 PHASE 2 STUDY Patients underwent randomization AG10-201 (Random-17 16 16 ized, AG10 400mg AG10 800mg Placebo 28 days) 2 Declined¹ 47 (96%) Continued onto open label extension (OLE)² 6 discontinued AG10-202 3 died (OLE, 1 received heart transplant ongoing) 2 other 41 Continue on study

AG10-202 (OLE) OUTCOMES

Primary Outcomes

Safety and tolerability

- Adverse events
- Clinical events and vital signs
- Clinical laboratory parameters

Secondary and exploratory outcomes

Pharmacokinetics

Pharmacodynamics

Echocardiographic parameters

Data reported as of 8/31/2019 in conjunction with annual regulatory reporting and review:

- Median 65 weeks from AG10-201 (Randomized) initiation
- Median 53 weeks on open-label AG10

1 Both declined participation due to geographical constraints regarding study visits

² Median rollover period of 72 days (range 41-152 days)

	Placebo n = 17	Pooled AG10 n = 32	Total n = 49
Age, median (range)	72 (60-85)	74 (60-86)	73 (60-86)
Male, n (%)	17 (100%)	28 (88%)	45 (92%)
ATTRm, n (%)	3 (18%)	11 (34%)	14 (29%)
NYHA Class II, n (%)	12 (71%)	23 (72%)	35 (71%)
NYHA Class III, n (%)	5 (29%)	9 (28%)	14 (29%)
NT-proBNP (pg/mL) ¹	3151 ± 2704	3483 ± 2869	3368 ± 2789
TnI (ng/mL) ²	0.18 ± 0.33	0.15 ± 0.20	0.16 ± 0.25
TTR (mg/dL) ³	23.4 ± 5.5	21.3 ± 5.3	22.0 ± 5.4

ATTRm-CM variants (n)

V122I (11)

T60A (2)

V30M (1)

Judge, D.P. et al. JACC Vol. 74, No. 3, 2019:285 – 95

¹ NT-proBNP = N-Terminal pro B-type Natriuretic Peptide, normal range = 0-449 pg/mL

² TnI = troponin I, normal range = 0 - 0.02 ng/mL

³ TTR = transthyretin (prealbumin), normal range = 20 - 40 mg/dL

No safety signals of clinical concern identified in Phase 2 OLE

Summary of treatment-emergent adverse events

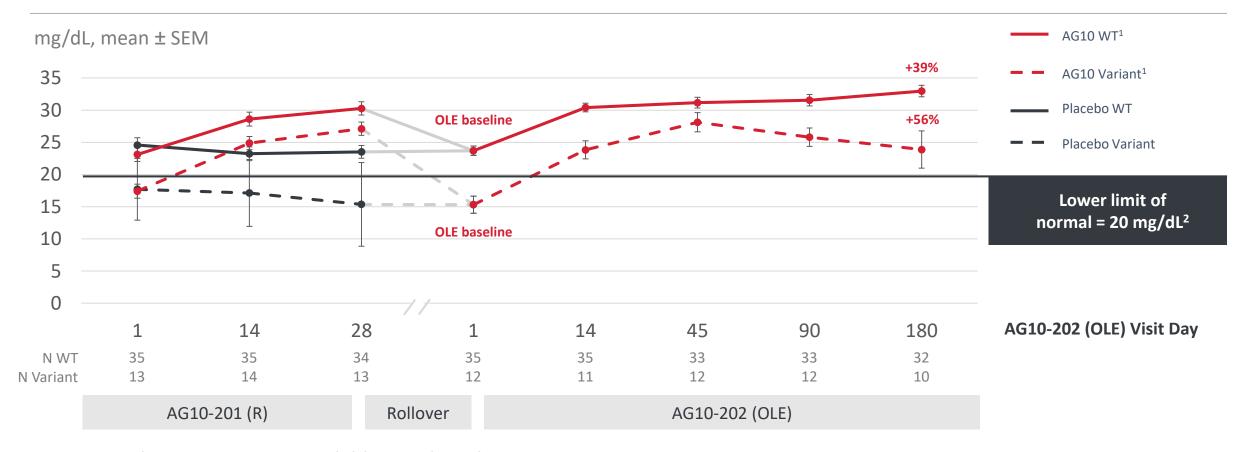
Number of participants (%)

Ann Advance Frants	46 (07.0)
Any Adverse Events	46 (97.9)
Most common Adverse Events (≥ 5)	
Fall	12 (25.5)
Cardiac failure congestive	7 (14.9)
Dyspnoea	6 (12.8)
Acute kidney injury	6 (12.8)
Fluid overload	5 (10.6)
Gout	5 (10.6)
Pneumonia	5 (10.6)

Summary of treatment-emergent serious adverse events

Number of participants (%)

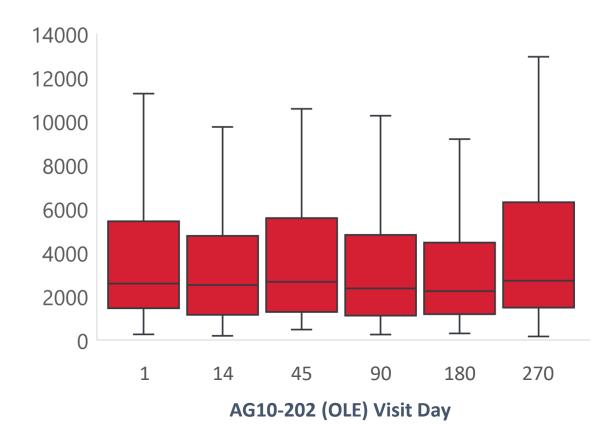
Any Serious Adverse Events	19 (40.4)
Number of subjects who died	3 (6.5) ¹ 12 (25.5)
Any Cardiovascular Serious Adverse Events	
Most common Serious Adverse Events (≥ 2)	
Cardiac failure congestive	5 (10.6)
Acute kidney injury	4 (8.5)
Atrial fibrillation	2 (4.3)
Cardiac failure	2 (4.3)
Fall	2 (4.3)
Dehydration	2 (4.3)


AG10 was generally well tolerated with a pattern of adverse events consistent with underlying disease severity, concurrent illnesses, and age of participants

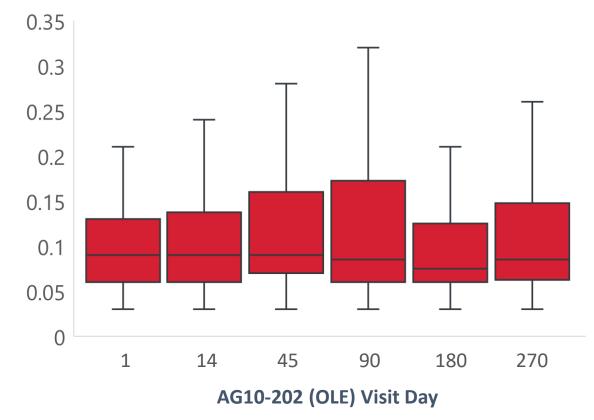
^{1.} Includes 2 subjects who had SAEs with an outcome of death (1 disease progression; 1 cervix carcinoma); 1 subject died due to heart failure 86 days after the last dose of study drug; Data reported as of 8/31/2019 in conjunction with annual regulatory reporting and review

Serum TTR levels increased upon AG10 treatment and were maintained throughout study duration

Serum TTR concentration

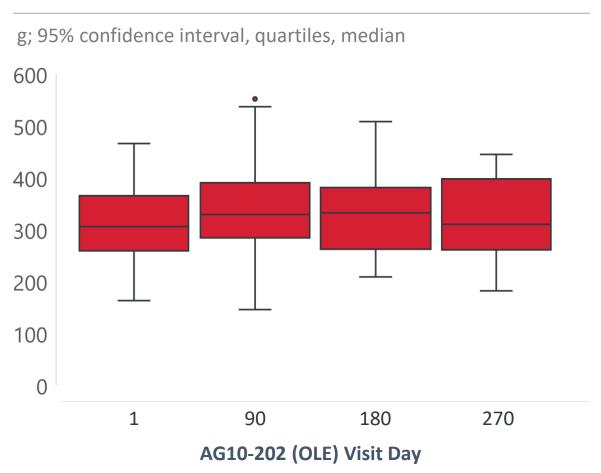

- 1. 400mg and 800mg BID AG10 groups pooled during randomized portion
- 2. Defined as the lower limit of the reference interval for the serum prealbumin (TTR) clinical laboratory assay

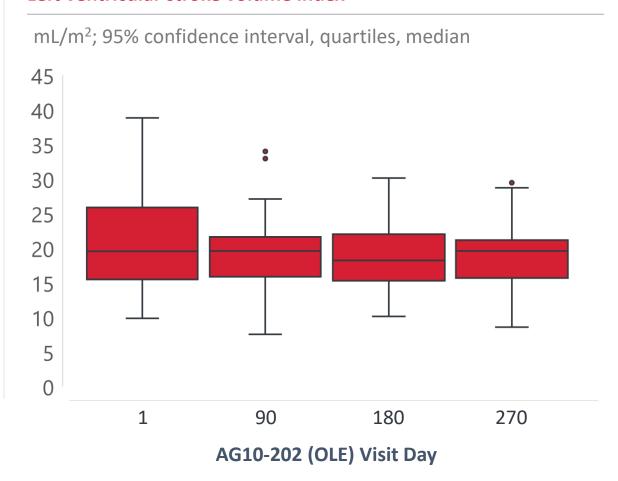
NT-proBNP and TnI levels were unchanged in AG10-treated participants throughout OLE



pg/mL; 95% confidence interval, quartiles, median

Tnl


ng/mL; 95% confidence interval, quartiles, median


Echocardiography parameters were unchanged in AG10-treated participants throughout OLE

Left ventricular mass

Left ventricular stroke volume index

Participants in the AG10 Phase 2 study had similar baseline characteristics as those in the ATTR-ACT study

Baseline characteristics from ATTR-ACT study and AG10 Phase 2 study

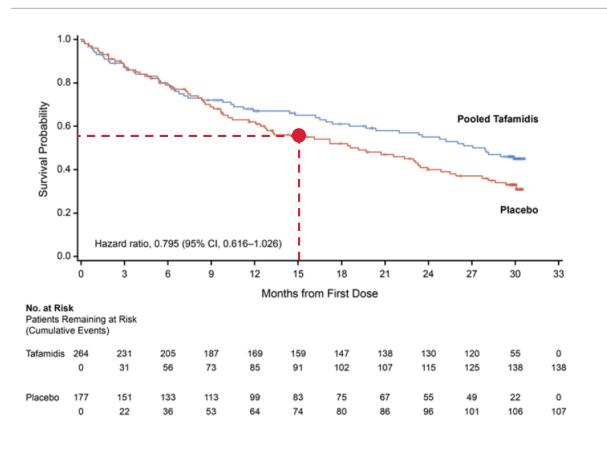
	ATTR-ACT Phase 3 study Tafamidis group ¹	ATTR-ACT Phase 3 study Placebo group ¹	AG10 Phase 2 study All groups ²
Age, median (range)	75 (46-88)	74 (51-89)	73 (60-86)
Male, n (%)	241 (91%)	157 (89%)	45 (92%)
ATTRm, n (%)	63 (24%)	43 (24%)	14 (29%)
NYHA Class			
Class I, n (%)	24 (9%)	13 (7%)	0 (0%)
Class II, n (%)	162 (61%)	101 (57%)	35 (71%)
Class III, n (%)	78 (30%)	63 (36%)	14 (29%)
Race			
White, n (%)	211 (80%)	146 (83%)	35 (71%)
Black, n (%)	37 (14%)	26 (15%)	10 (20%)
Other, n (%)	16 (6%)	5 (3%)	4 (8%)


¹ Maurer, M.S. et al. N Engl J Med. 2018;379:1007–16

² Judge, D.P. et al. JACC Vol. 74, No. 3, 2019:285 – 95

Mortality in placebo-treated participants at 15 months in the ATTR-ACT study was 15.3%

All-cause mortality from ATTR-ACT Phase 3 trial

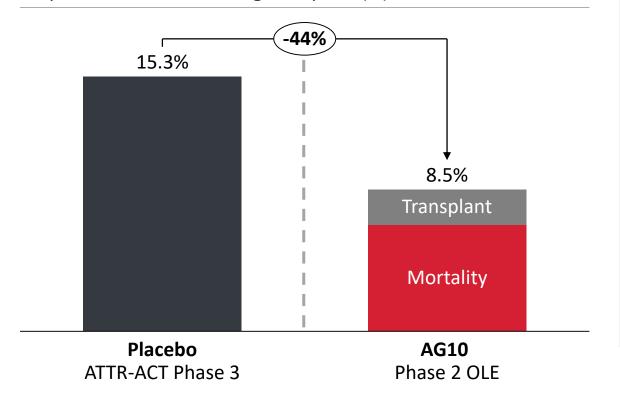

Mortality at 15 months Placebo 15.3%

Adapted from Maurer, M.S. et al. N Engl J Med. 2018;379:1007-16.

Placebo

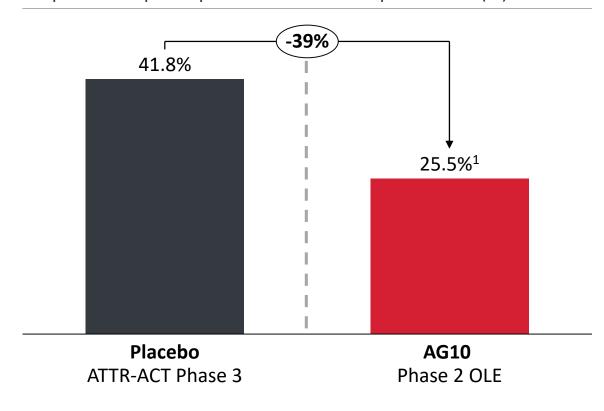
Proportion of placebo-treated participants with 1st cardiovascular hospitalization within 15 months in the ATTR-ACT study was 41.8%

Patients with 1st CV hospitalization from ATTR-ACT trial



Adapted from Maurer, M.S. et al. N Engl J Med. 2018;379:1007–16 Supplement.

Deaths and CV hospitalizations reported in AG10 Phase 2 OLE were lower than those in placebo-treated ATTR-ACT participants


All-cause mortality at 15 months

Proportion died or receiving transplant (%)

Cardiovascular hospitalizations at 15 months

Proportion of participants with ≥1 CV hospitalization (%)

1 Based on routine adverse event reporting

Note: These data are based on a cross-trial comparison and not a randomized clinical trial. As a result, the values shown may not be directly comparable

Summary of AG10 Phase 2 OLE results

1

Safety and tolerability

Adverse event profile consistent with ATTR-CM disease severity, supportive of continued evaluation in ongoing Phase 3 trial

Cardiac biomarkers

Sustained improvement in serum TTR and stability of NT-proBNP, TnI, and echocardiographic parameters

3

Mortality and CV hospitalizations

Mortality and CV hospitalization were lower in AG10 Phase 2 OLE participants than in placebotreated ATTR-ACT participants at 15 months¹

These data support further development of AG10 in ATTR-CM. A randomized, placebo-controlled Phase 3 trial is ongoing (NCT03860935)

1 These data are based on a cross-trial comparison and not a randomized clinical trial. As a result, the values may not be directly comparable

A sincere thank-you to the patients and families, investigators, referring physicians, clinical research staff, Eidos employees, and collaborating research partners participating in the study.

Phase 2 investigators				
Rodney Falk, MD Brigham and Women's Hospital	Martha Grogan, MD Mayo Clinic	Mazen Hanna, MD Cleveland Clinic		
Stephen Heitner, MD Oregon Health & Science University	Daniel Jacoby, MD Yale University	Daniel Judge, MD Medical University of South Carolina		
Mat Maurer, MD Columbia University	Jose Nativi-Nicolau, MD University of Utah	Jignesh Patel, MD, PhD Cedars-Sinai Medical Center		
Van Selby, MD University of California San Francisco	Sanjiv Shah, MD Northwestern University	Ronald Witteles, MD Stanford University		

Mamoun M. Alhamadsheh, PhD and Isabella A Graef, MD for discovery of AG10. Science Translational Medicine 2011; 3:97ra81