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1. Background
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Prevalence and Incidence
Incidence = fraction of newborns affected by the disease
Prevalence = fraction of people affected by the disease

Net present value modeling
Prevalence   ∝ peak sales   ∝ revenue
Risk-adjusted net present value:

rNPV = ∑time Prob(success) x (revenue – expenses) x discount incidence
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2. Challenges
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Source Advantage Disadvantage

Patient societies Few false positives incomplete

Population genetics High sensitivity Works only for hereditary 
diseases

Newborn screens Most accurate Covers only few 
diseases, missing new 
genes

Physician interviews Accurate patient count Unknown size of 
”covered population”

Health records Detailed phenotypes Incomplete, missing new 
diseases

Claims data Large population Incomplete, 
focused on billing (not 
diagnosis)

Published epidemiology 
studies

Carefully curated High effort, usually for 
specific disease within 
certain geographic 
region and time
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2.1 Challenges of population genetics approach

Allele frequencies of the top causative variants can differ widely between 
people from different ethnicity.  To account for this bias, we need to estimate 
ethnicity-specific allele frequencies. To deal with the low sample size, we 
employ a random-effect model that benefits from partial pooling of different 
ethnicities.

Basic idea: incidence
=   variant pathogenicity x variant frequency

Pathogenicity:

1.  Large number of variants with uncertain significance

2.  New genes have many fewer publications, therefore seemingly 
less evidence

3.  Quantifying penetrance is impossible for rare variants. Discrete 
pathogenicity classes don’t translate to penetrance.

4.  Pathogenicity is different for different isoforms, and often it is not 
the canonical isoform that is most expressed in the relevant tissue.

Frequency:

1.  Allele frequencies (and prevalence) can vary widely between 
different ethnic groups (e.g. Sickle-cell anemia)

2.  Population genetics databases may
• Oversample the majority ethnicity, or
• Oversample large minority ethnicities (if striving for 

genetic diversity)
• Even in the best case, can be representative of at 

most one of many geographical regions with 
different genetic ancestry

-> Using the sample “global” allele frequency is biased.

3.  Certain ethnic groups may be under-sampled
-> Empirical allele frequencies are noisy.

variants ClinVar HGMD VarSome

v1 Pathogenic DM? Uncertain 
Significance

v2 Likely 
Pathogenic DM Likely 

Benign

v3 Likely 
Benign (missing) Uncertain 

Significance

v4 Pathogenic (missing) Likely 
Pathogenic

Increasing allele count (AC)

AF 95%CI: 
[–97%, +270%]

AF 95%CI: 
[–87%,  +180%]

AF 95%CI: 
[–52%,  +71%]

AF 95%CI: 
[–68%, +105%]



1. Background

2. Challenges

3. Method

4. Results

5. Discussion

Content

7



3. Method

8

”synonymous” by VEP?

“Benign” or “Likely benign” in VarSome?1. Join all variants in the gene region (gnomAD, TOPMed, UKB) 
with pathogenicity data (ClinVar, HGMD, VarSome, VEP)

2. Select only variants with the relevant phenotypes

3. Select pathogenic variants using pathogenicity filters
4. Estimate ancestry-specific carrier frequencies with Monte Carlo 

algorithm
5. Compute incidence based on inheritance pattern
6. Weight ancestry-specific number with regional ethnicity fractions to 

get regional incidence (USA and EU numbers)

gnomAD, 
TOPMed, UKB

HGMD, ClinVar, 
VarSome, VEP

USA, EU 
demographics

• incidence rates and 
• # of new annual cases
for

• regions: USA, EU
• broken down by ethnicities

Automated pathogenicity filter
Output: nP (not pathogenic) or P (pathogenic)

“Benign” or “Likely benign” in ClinVar?

# of HOM > 0 in gnomAD?

AF > 1% in gnomAD?

“Pathogenic” in VarSome?

LoF-type by VEP?

“DM” in HGMD?

“Pathogenic” or “Likely pathogenic” AND 
reviewer stars >= 1 in ClinVar?
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First, we limit the variants to those with confidently pathogenic minor alleles 
and with associations with the disease in question. To do this, we filter based 
on functional annotation from multiple sources and tune the method to be 
accurate for diseases with known incidence. 
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3.1 Incidence formulas

Incidence = )
! ∈ #$#%&'()$*+

Incidence! × fraction!

Incidence! = )
, ∈ -'.)'*(+

AF!,,

0
Incidence for each population p

Incidence for geographical region

Prevalence = Incidence × Life expectancy, if affacted

Prevalence for geographical region

AF!,, ← MCMC samples from binomial model: AC!,, ~ Binomial(AF!,,, AN!,,)

Population-specific allele frequency (v: variant, p: population)

= input data

Assuming 
1. recessive inheritance
2. complete genetic mixing
3. low carrier frequency

Assuming 
4. No mixing between

populations

Assuming 
5. constant birth rate
6. constant ethnic composition

Then, we quantify the ethnicity-specific allele frequencies of each variant with their Monte Carlo Markov 
chain samples drawn from a non-linear random-effect model with binomial outcome and logit-normal 
prior shared between ethnic groups. Finally, allele frequency samples are combined across variants to 
produce the posterior of ethnicity-specific frequencies of carriers, assumed to be unaffected, and 
aggregated to yield region-specific numbers.
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Pathogenicity:
• Variants often labeled as “Uncertain 

significance” or “Conflicting interpretation” 
by one or more databases

• Different levels of evidence of pathogenicity
• Incomplete penetrance

High-frequency variant with uncertain 
pathogenicity causes large uncertainty in the 
final incidence estimate.

Source of uncertainty How we quantify it

Frequency:
• Under-sampled ethnicities
• Zero allele counts with low sample size

Incidence among minorities is underestimated 
and has higher uncertainty.

1. Use two pathogenic filters
“Conservative“

• only SNPs, 

• VEP “LoF” annotation is not enough for 
pathogenic verdict

“Liberal”
• SNPs, MNPs, short InDels
• VEP “LoF” annotation is enough for 

pathogenic verdict
2. Construct [low, high] range from their results

1. Fit a Bayesian, non-Gaussian random effect 
model to the allele count data across ethnicities

2. Quantify credible intervals (CI) of allele 
frequencies using Markov chain Monte Carlo 
(MCMC) sampling

3. Quantify CI for the final incidence estimate by 
directly computing on the MCMC samples of allele 
frequencies

3.2 Quantifying the uncertainty

Directly computing with Monte Carlo samples 
allows one to characterize the uncertainty 
with straightforward summary statistics and 
enables propagating it to downstream 
analyses without losing information.
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Challenge: Some ethnicities have 
low allele counts

Assumption: Allele frequencies 
are similar between ethnicities

Solution: Estimate AF in all 
ethnicities simultaneously, 
adaptively borrowing information 
from estimate for the global AF 
(Bayesian random effect model 
for binary data)

Consequence: 

• AF > 0 even if allele count (AC) 
= 0 for any one ethnicity

• Low allele numbers (AN) lead 
to AF estimates close to the 
global AF, with high uncertainty

• Ethnicities with high AN are 
affected marginally, as if they 
were estimated independently

• Global AF is estimated 
adaptively, taking the 
uncertainty of ethnicity-specific 
AFs into account

//logit-normal-binomial.stan

data {
int M;
int AC[M];
int AN[M];
real sigma0;

}

parameters {
real alpha[M];
real mu;
real<lower=0> sigma;

}

model {
sigma ~ exponential(1 / sigma0);
alpha ~ normal(mu, sigma);
AC  ~ binomial_logit(AN, alpha);

}

generated quantities {
real AF[M];
AF = inv_logit(alpha);

}

AN4
AN5

AF1

AF2 AF3

AF4

AF5

ethnicity-specific (logit) allele frequencies (𝛼!)

allele count (AC) and number (AN) data

prior of (logit) allele frequency

𝜇 : global mean of (logit) AF

σ : spread of (logit) AF

Logit function
transforms (0,1) to (-inf, + inf)

prior of σ
𝜎!

0

AC4
AC5

AN3

AC3

AN2

AC2

AN1

AC1

MCMC engine (STAN) code

binomial
binomial

binomialbinomial

binomial

3.3 Bayesian random effect model for allele counts

For each variant, the ethnicity-specific allele frequencies 
are estimated using a non-Gaussian random effect model. 
We use the Markov Chain Monte Carlo engine STAN to 
sample the Bayesian posterior.
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1. Merge allele count (AC) and pathogenicity (p) data

2. Select pathogenic variants
3. Fit the logit-normal-binomial random effect model to the allele 

counts (AC) and numbers (AN) of each variant separately, and 
obtain MCMC sample

4. Compute incidence for each sample for each ethnicity
5. Aggregate and quantify credible interval

AC p

pAC

Step 1
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3.4. Overview of incidence estimation - Illustration of algorithm
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MCMC samples of allele frequencies (AF) of the  
top 4 pathogenic variants of a sample gene

…

MCMC samples of AF
empirical AF

ethnicity

MCMC samples of incidence

Variant #1 Variant #2 Variant #3 Variant #4

4.1.1. Validation: Example output
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4.1.2. Validation: Integrating across ethnic groups

USA EU

13.2% 0.7%

1.8% 0.2%

5.3% 0.2%

0% 0.7%

59.4% 97.3%

18.3% 0.3%

2.0% 0.5%

0% 0%

x

x

x

x

x

x

x

x

Ethnicity-specific incidence Region-specific ethnicity composition

∑ ∑
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4.1.3 Validation: Different pathogenicity stringency levels

Variants

Confidently 
pathogenic variants

Confidently  + Likely 
pathogenic variants

incidence incidence

conserva
tive
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rs

liberal filters

1. Estimate AFs
2. Estimate incidence
3. Combine with ethnic composition

of geographic region

1. Estimate AFs
2. Estimate incidence
3. Combine with ethnic composition

of geographic region
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• Agreement increases confidence in pathogenicity estimates
• Disagreement requires refinement of pathogenicity filters

Manual curation of 
variants until 
convergence
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4.1.4. Validation: Comparison between different population databases (UK Biobank vs 
gnomAD)

• The results on 16 genes were largely concordant between 
gnomAD and UK Biobank. 

• However, this comparison also highlighted genes that 
suggested orders of magnitude differences that are worth 
further calibration.

Posterior distributions of incidence

G
E
N
E
1

G
E
N
E
3

G
E
N
E
5

G
E
N
E
7

G
E
N
E
9

G
E
N
E
11

G
E
N
E
13

G
E
N
E
15

G
E
N
E
2

G
E
N
E
4

G
E
N
E
6

G
E
N
E
8

G
E
N
E
10

G
E
N
E
12

G
E
N
E
14

G
E
N
E
16



19

High-confidence newborn screens
• Results from automatic estimation (no phenotype 

filtering) match results from new-born screen 
qualitatively

• 14 out of 24 genes were quantitatively discrepant 
between the two methods 
• for 5 genes, CompGen > NBS
• Differences in incidence estimates could mostly 

be explained by manual curation of variants and 
phenotypes included in the algorithm

• One such example was phenylketonuria (PKU) 
where our method included both mild and 
classical PKU

• These results suggest that although a default 
run can provide reliable estimates for some 
diseases (58%), manual curation of the input 
data is critical 

4.1.5. Validation: Incidence estimation

Newborn screen (birth incidence CDC, USA)
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• Dystrophic epidermolysis bullosa (DEB) is a rare genodermatosis due to mutations in the 
COL7A1 gene encoding the alpha-chain of collagen 7 (C7). C7 deficiency results in 
dermalepidermal junction separation with severe, painful blistering and scarring. Both 
dominant (DDEB) and recessive (RDEB) forms occur with RDEB being typically more severe.

• Multiple subtypes of RDEB exists that may be treated using a protein replacement therapy:
• Generalized, severe RDEB is the most severe form of RDEB
• Other RDEB, which includes

• Intermediate-form RDEB, RDEB inversa, RDEB pruriginosa, Localized RDEB, 
Acral RDEB, Nails only RDEB, Pretibial RDEB, Self-improving RDEB

• Epidemiology estimates, from Fine et al. (2016):
• Prevalence:

• RDEB, generalized severe: 0.36 / 1M people (26%)
• RDEB, other: 0.99 / 1 M people (73%)

• Incidence:
• RDEB, generalized severe: 0.57 / 1M births (18.7%)
• RDEB, other: 2.48 / 1M births (81.3%)

• We tested the incidence estimation algorithm to triangulate potential treatable population of a 
protein replacement therapy.

4.2.1 Background on Recessive Epidermolysis Bullosa (RDEB)

https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=11434
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=11907
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=11435
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=11908
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=29740
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=17233
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=17234
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=11436
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=11437
https://jamanetwork.com/journals/jamadermatology/fullarticle/2537024
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selected_phenotypes = [
"Abnormal blistering of the skin",
"Bullous lesions",
"Dominant dystrophic epidermolysis bullosa with absence of skin",
"Dystrophic epidermolysis bullosa",
"Epidermolysis Bullosa Distrophica Autosomal Recessive (RDEB)",
"Epidermolysis bullosa",
"Epidermolysis bullosa dystrophica",
"Epidermolysis bullosa dystrophica inversa, autosomal recessive",
"Epidermolysis bullosa dystrophica with amniotic band syndrome",
"Epidermolysis bullosa dystrophica, Pasini type",
"Epidermolysis bullosa dystrophica, autosomal recessive, localisata variant",
"Epidermolysis bullosa dystrophica, intermediate",
"Epidermolysis bullosa dystrophica, inversus type",
"Epidermolysis bullosa dystrophica, nails only",
"Epidermolysis bullosa dystrophica, pretibial",
"Epidermolysis bullosa dystrophica, recessive",
"Epidermolysis bullosa dystrophica, recessive, intermediate",
"Epidermolysis bullosa dystrophica, recessive, localised",
"Epidermolysis bullosa dystrophica, recessive, pruriginosa",
"Epidermolysis bullosa dystrophica, recessive, self-improving",
“Epidermolysis bullosa pruriginosa",
"Epidermolysis bullosa pruriginosa, autosomal dominant",
"Epidermolysis bullosa pruriginosa, autosomal recessive",
"Epidermolysis bullosa, pretibial, autosomal recessive",
"Generalized dominant dystrophic epidermolysis bullosa",    
"Recessive dystrophic epidermolysis bullosa",

]

Manual curation of phenotypes in ClinVar and HGMD was conducted to 
select only the most relevant ones. This was an iterative efforts with 
multiple feedback from clinical scientists and experts in RDEB.

4.2.2 Phenotype curation for RDEB

excluded_phenotypes = [
"Abnormality of the skin",
"Abnormality of the thyroid gland",
"Anonychia",
"Autism spectrum disorder",
"Bart syndrome",
"Barts syndrome",
"Bladder Urothelial Carcinoma",
"Brain Lower Grade Glioma",
"Breast cancer",
"Bullous dermolysis of the newborn",
"Bullous ichthyosiform erythroderma",
"COL7A1-related disorders",
"COL7A1-related epidermolysis bullosa",
"Cerebral palsy, modifier of",
"Conotruncal heart defects",
"Ductal breast carcinoma",
"Epidermal nevus",
"Epidermolysis bullosa dystrophica, self-improving",
"Finger syndactyly",
"Ichthyosis (disease)",
"Inborn genetic diseases",
"Inflammatory bowel disease",
"Liver hepatocellular carcinoma",
"Lung squamous cell carcinoma",
"Nail disorder, nonsyndromic congenital, 8",
"Nail dystrophy",
"Palmoplantar blistering",
"Pancreatic adenocarcinoma",
"Persistent cloaca",
"Pretibial epidermolysis bullosa", 
"Short stature",
"Skin erosion",
"Skin fragility with non-scarring blistering",
"Toe syndactyly",
"Transient bullous dermolysis",
"Transient bullous dermolysis of the newborn",
"Uveitis",

]



• Only "Pathogenic" or "Likely Pathogenic” variants in all databases considered were included in the 
calculation

• pLoF variants were included in the ”liberal” estimates when computing the higher bound of the 
interval range

• Results

Source of literature estimate: Fine et al. (2016)23

population incidence rate 
(low)

incidence rate 
(base)

incidence rate 
(high)

Europe 3.26e-06 5.48e-06 8.53e-06

USA 2.79e-06 5.38e-06 9.63e-06

population new annual 
cases (low)

new annual 
cases (base)

new annual 
cases (high)

Europe 13.8 23.25 36.2

USA 10.6 20.4 36.5

• Conclusion: Overall, the estimate is higher than literature estimate (0.57 + 2.48) / 1M = 3.05 / 1M, 
but the 95%-credible interval [2.79, 9.63] / 1M contains the literature estimate.

4.2.3 RDEB birth incidence estimate

https://jamanetwork.com/journals/jamadermatology/fullarticle/2537024


Eichstadt et al. (2019), Table 2. Interpolated for each year. Life 
expectancy:
• RDEB Generalized Severe: 37.0 years
• RDEB Other: 55.7 years
• RDEB (GS + Other, weighted average, with weights 18.7%, 

81.3%): 52.2 years

24

interpolated for every year

Total number of pediatric patients
• Life-expectancy times incidence rate yields 

the total number of patients. Multiplied by 
the pediatric fraction yields the number of 
patients under 19.

RDEB (in US)

Validation against data from US claims:
• RDEB + DDEB US patients: 1554 [1042, 

2394] (Prognos: 1214)
• RDEB + DDEB US patients under 19 years 

old: 525 [342, 827] (Prognos: 560)

USA RDEB
base [low, high]

Incidence (per million births) 5.38 [2.79, 9.63]

Newborns per year 20.4 [10.6, 36.5]

Prevalence (per million) 3.6 [1.8, 6.4]

Patients 1065 [553, 1905]

Patients (age <= 18 years) 383 [200, 685]

4.2.4 RDEB overall and pediatric prevalence estimates
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Discussion
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Key assumptions of the model

• Well-defined genetic cause
• Population of each ethnicity is 

well-mixed
• Pathogenic variants are 

inherited
• Carriers are found in general 

population 
with high enough frequency (> 
1 in 200,000)

• HET genotype have little effect
• Pathogenic variants have high 

penetrance

Limitations of the model

• Variants with incomplete, low 
penetrance

• Modifiers
• Polygenic or environmental 

effects
• AD and X-linked diseases
• De-novo mutations
• Consanguinity
• Founder effects


