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1. Background

Prevalence and Incidence
Incidence = fraction of newborns affected by the disease
Prevalence = fraction of people affected by the disease

Net present value modeling
Prevalence « peak sales « revenue

Risk-adjusted net present value:
NPV = > ime Prob(success) x (revenue — expenses) x discount

population
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Quantifying the
uncertainty in
prevalence
translates to lower
and upper bounds
on rNPV.
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2. Challenges

Source

Advantage

Disadvantage

Patient societies Few false positives incomplete
Population genetics High sensitivity Works only for hereditary
diseases

Newborn screens

Most accurate

Covers only few
diseases, missing new
genes

Physician interviews

Accurate patient count

Unknown size of
"covered population”

Health records

Detailed phenotypes

Incomplete, missing new
diseases

Claims data

Large population

Incomplete,
focused on billing (not
diagnosis)

Published epidemiology
studies

Carefully curated

High effort, usually for
specific disease within
certain geographic
region and time
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Allele frequencies of the top causative variants can differ widely between
people from different ethnicity. To account for this bias, we need to estimate
ethnicity-specific allele frequencies. To deal with the low sample size, we
employ a random-effect model that benefits from partial pooling of different

2.1 Challenges of population genetics approach ethniities.

Basic idea: incidence
= variant pathogenicity x variant frequency

Pathogenicity:

1. Large number of variants with uncertain significance

2. New genes have many fewer publications, therefore seemingly
less evidence

3. Quantifying penetrance is impossible for rare variants. Discrete
pathogenicity classes don’t translate to penetrance.

4. Pathogenicity is different for different isoforms, and often it is not
the canonical isoform that is most expressed in the relevant tissue.

Frequency:

1. Allele frequencies (and prevalence) can vary widely between
different ethnic groups (e.g. Sickle-cell anemia)

2. Population genetics databases may

. Oversample the majority ethnicity, or

. Oversample large minority ethnicities (if striving for
genetic diversity)

. Even in the best case, can be representative of at
most one of many geographical regions with
different genetic ancestry

-> Using the sample “global” allele frequency is biased.

3. Certain ethnic groups may be under-sampled
-> Empirical allele frequencies are noisy.

posterior density

T T

V1 DM? Uncertain
Significance
v2 Likely Likely
Pathogenic Benign
Likely . Uncertain
v3 Benign (missing) Significance

. Likel

Increasing allele count (AC)

v

AC=1 AC=2 AC=5 AC =10
2 1 o 1 2 2 1 0o 1 2 2 1 0o 1 2 -2 -1 0 1 2
log10( AF / empirical AF ) log10( AF / empirical AF ) log10( AF / empirical AF ) log10( AF / empirical AF )
AF 95%Cl: AF 95%Cl: AF 95%Cl: AF 95%Cl:
[-97%, +270%] [-87%, +180%] [-68%, +105%)] [-52%, +71%)]
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First, we limit the variants to those with confidently pathogenic minor alleles
and with associations with the disease in question. To do this, we filter based

on functional annotation from multiple sources and tune the method to be
- et o accurate for diseases with known incidence.

gnomAD, HGMD, ClinVar, USA, EU

TOPMed, UKB VarSome, VEP demographics

1 1 1

1. Join all variants in the gene region (gnomAD, TOPMed, UKB)

with pathogenicity data (ClinVar, HGMD, VarSome, VEP)

Select only variants with the relevant phenotypes

3. Select pathogenic variants using pathogenicity filters

Estimate ancestry-specific carrier frequencies with Monte Carlo

algorithm
5. Compute incidence based on inheritance pattern

6. Weight ancestry-specific number with regional ethnicity fractions to

get regional incidence (USA and EU numbers)

MOCS1
inheritance: AR

e incidence rates and
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--+» Automated pathogenicity filter
Output: n (not pathogenic) or P (pathogenic)

YES
»synonymous” by VEP? %’
¥ No
YES
“Benign” or “Likely benign® in VarSome?
¥ no
YES
“Benign” or “Likely benign® in ClinVar?
I I
YES
# of HOM > @ in gnomAD?
¥ no
YES
AF > 1% in gnomAD?
J no
YES
“Pathogenic” in VarSome? P
¥ no
YES
LoF-type by VEP? P
I I
YES
“DM” in HGMD? P P
¥ no

YES
“Pathogenic” or “Likely pathogenic” AND

reviewer stars »>= 1 in ClinVar?

¥ no

P

'I'I1
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Then, we quantify the ethnicity-specific allele frequencies of each variant with their Monte Carlo Markov
chain samples drawn from a non-linear random-effect model with binomial outcome and logit-normal
prior shared between ethnic groups. Finally, allele frequency samples are combined across variants to
produce the posterior of ethnicity-specific frequencies of carriers, assumed to be unaffected, and

3.1 InCidence formUIaS aggregated to yield region-specific numbers. = input data
R
Population-specific allele frequency (v: variant, p: population)
AF,, < MCMC samples from binomial model: AC,,, ~ Binomial(AF, ,, AN, ;)
]
. . ]
Incidence for each population p _
) Assuming
1. recessive inheritance
Incidence., = Z AF 2. complete genetic mixing
p . pv 3. low carrier frequency
v € variants
[ . . ]
Incidence for geographical region
Assuming
] ) ) 4. No mixing between
Incidence = Z Incidence,, X fraction,, populations
p € populations
]
Prevalence for geographical region _
Assuming
Prevalence = Incidence X Life expectancy, if affacted 5. constant birth rate
6. constant ethnic composition
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3.2 Quantifying the uncertainty

Directly computing with Monte Carlo samples
allows one to characterize the uncertainty
with straightforward summary statistics and
enables propagating it to downstream

analyses without losing information.

Source of uncertainty

How we quantify it

Pathogenicity:

» Variants often labeled as “Uncertain
significance” or “Conflicting interpretation”
by one or more databases

+ Different levels of evidence of pathogenicity
* Incomplete penetrance

!

High-frequency variant with uncertain
pathogenicity causes large uncertainty in the
final incidence estimate.

1. Use two pathogenic filters
“Conservative*
* only SNPs,

* VEP “LoF” annotation is not enough for
pathogenic verdict

“Liberal”
* SNPs, MNPs, short InDels

* VEP “LoF” annotation is enough for
pathogenic verdict

2. Construct [low, high] range from their results

Frequency:
* Under-sampled ethnicities
+ Zero allele counts with low sample size

!

Incidence among minorities is underestimated
and has higher uncertainty.

1. Fit a Bayesian, non-Gaussian random effect
model to the allele count data across ethnicities

2. Quantify credible intervals (Cl) of allele

frequencies using Markov chain Monte Carlo
(MCMC) sampling

3. Quantify Cl for the final incidence estimate by
directly computing on the MCMC samples of allele
frequencies

bﬁJge
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For each variant, the ethnicity-specific allele frequencies
are estimated using a non-Gaussian random effect model.
We use the Markov Chain Monte Carlo engine STAN to
sample the Bayesian posterior.

3.3 Bayesian random effect model for allele counts

Challenge: Some ethnicities have
low allele counts

Assumption: Allele frequencies
are similar between ethnicities

Solution: Estimate AF in all
ethnicities simultaneously,
adaptively borrowing information
from estimate for the global AF
(Bayesian random effect model- _
for binary data)

Consequence:

* AF >0 even if allele count (AC)
= 0 for any one ethnicity

* Low allele numbers (AN) lead
to AF estimates close to the
global AF, with high uncertainty

» Ethnicities with high AN are
affected marginally, as if they
were estimated independently

e Global AF is estimated

—

e

A

S

e

ethnicity-specific (logit) allele frequencies («;)

H
binomial

H
binomial

v

MCMC engine (STAN) code

//logit-normal-binomial.stan

data {
int M;
int AC[M];
int AN[M];
real sigma®;

}

parameters {
real alpha[M];
real mu;
real<lower=0> sigma;

}

model {
sigma ~ exponential(l / sigma@);
alpha ~ normal(mu, sigma);

AC ~ binomial logit(AN, alpha);

}

generated quantities {
real AF[M];
AF = inv_logit(alpha);

binomial
adaptively, taking the AN, binomial binomial | AN AN; Logit function
uncertainty of ethniCity-SpeCiﬁc ANy ANg [ ] transforms (0,1) to (-inf, + inf) p
AFs into account O ] . "
AC; AC, AC; AC, ACs logit (p) = log (E)

allele count (AC) and number (AN) data

bﬂJge
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3.4. Overview of incidence estimation - lllustration of algorithm

1. Merge allele count (AC) and pathogenicity (p) data
2. Select pathogenic variants

3. Fit the logit-normal-binomial random effect model to the allele
counts (AC) and numbers (AN) of each variant separately, and
obtain MCMC sample

4. Compute incidence for each sample for each ethnicity

1]

5. Aggregate and quantify credible interval

“y
[}
©

\
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<

low
high

® B—a ,
I | e 9 > B—8a g
—T T . Step 2 = Step3 | g':’ B—3 g
—TAC T p I ———» & AC p e Step 4 S = Step5 BI—@
! ! AF 8 o B—3 e
L] _ . 58 B—m3
"""""""""""""""""" Zo B—8o
----------------------- £8 —o
“afr asj eas fin sas nfe amr oth
AC | AN AC | AN AC | AN AC | AN AC | AN AC | AN AC | AN AC | AN
ép3 \
\ Y v v v v v v v v
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4.1.1. Validation: Example output

MCMC samples of allele frequencies (AF) of the ~ Ell MCMC samples of AF

I MCMC samples of incidence

top 4 pathogenic variants of a sample gene empirical AF
ethnicity Variant #1 Variant #2 Variant #3 Variant #4

African/African-American

Ashkenazi Jewish

East Asian

European (Finnish)

European (non-Finnish)

Latino/Admixed American

South Asian

Other

AC =23, AN = 24,968

AC =1, AN = 16,256

AC =0, AN = 24,970

AC =2, AN = 24,966

L

AC =0, AN =10,368

AC =0, AN =10,362

el

AC =0, AN =10,078

_=a

AC =0, AN =10,368

oy

.k

AC =5, AN = 19,952

AC =0, AN = 19,954

AC =22, AN = 25,116

AC =0, AN = 18,394

e

AC =0, AN =19,952

A

AC =19, AN = 25,118

AC =0, AN = 25,120

A
A

i

AC = 358, AN = 129,114

AC =0, AN = 21,648

i

AC=1, AN=113,734

AC =4, AN =129,178

AC =3, AN = 128,360

A

AC = 30, AN = 35,434

AC =0, AN = 34,590

AC =0, AN = 35,434

AC =0, AN = 35,440

!

AC =0, AN = 30,616

;|

AC =71, AN = 30,616

AC =0, AN = 30,614

AC =2, AN = 30,616

Y

AC =11, AN =7,220

AC =0, AN = 6,140

AC=1, AN =7,228

A

AC=1, AN =7,220

A

-8 -7 -6 -5 -4 -3 -
log10( Allele Frequency )

—a

-8 -7 -6 -5 -4 -3
log10( Allele Frequency )

-2 -8 -7 -6 -5 -4 -3
log10( Allele Frequency )

-2 -8

-7 -6 -5 -4 -3 -2
log10( Allele Frequency )

-8 -7 -6 -5
log10( incidence rate )
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4.1.2. Validation: Integrating across ethnic groups

Ethnicity-specific incidence

African/African-American

Ashkenazi Jewish

European (Finnish)

European (non-Finnish)

Latino/Admixed American

South Asian

Other

A

_h

A

A

i

=8 -8 -7 -6 -5
log10( incidence rate )

-4

Reqgion-specific ethnicity composition

13.2% 0.7%
1.8% 0.2%
5.3% 0.2%
0% 0.7%
59.4% 97.3%
18.3% 0.3%
2.0% 0.5%
0% 0%
|2 |
USA Europe
N - W

16

bHJge



4.1.3 Validation: Different pathogenicity stringency levels

Confidently
pathogenic variants

1
2.
3. Combine with ethnic composition

incidence

Estimate AFs
Estimate incidence

of geographic region

2
IS

base
high

» Agreement increases confidence in pathogenicity estimates
» Disagreement requires refinement of pathogenicity filters

Compare

Confidently + Likely
pathogenic variants

1. Estimate AFs
2. Estimate incidence

incidence  Of geographic region

low
base
high

3. Combine with ethnic composition

Manual curation of

variants until
convergence

bHJge
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4.1.4. Validation: Comparison between different population databases (UK Biobank vs
gnomAD)

UKB (European)

Incidence rate

107 1 high
® base
low
........................ o
............... ’,/,,(.
1076 - - .;’J‘
o
1078 A
10-10
10124
10-12 10-10 10-8 10-6 e

gnomAD (European)

The results on 16 genes were largely concordant between
gnomAD and UK Biobank.

However, this comparison also highlighted genes that

suggested orders of magnitude differences that are worth

further calibration.

GENE15 GENE13 GENE11 GENE9 GENE7 GENE5 GENE3 GENE1

Posterior distributions of incidence

[ gnomad N [ gnomad
[ UKB LLI [ UKB
=
.
o
1 gnomad V' [ gnomad
[ UKB LLI [ UKB
=
w
o
[ gnomad © [ gnomad
[ UKB LLI [ UKB
!
LLI :
o
1 gnomad © [ gnomad
[ UKB [ UKB
.
=
LLI :
o
[ gnomad (@) [ gnomad
1 UKB = | uks
w
<
w
o
[ gnomad C\] [ gnomad
[ UKB ™~ [ UKB
2
N
O
[ gnomad X | gnomad
1 UKB = | 7 uks
W,
il
o
1 gnomad (o] [ gnomad
1 UKB = | uks
w,
Z|
w
Qo

-12 711 710 79 78 77

log10( incidence rate )

76

-12 —11 —10 —9 —B —7 —6
log10( incidence rate )
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4.1.5. Validation: Incidence estimation

High-confidence newborn screens
° Results from automatic estimation (no phenotype
filtering) match results from new-born screen
qualitatively

° 14 out of 24 genes were quantitatively discrepant
between the two methods

- for 5 genes, CompGen > NBS

- Differences in incidence estimates could mostly
be explained by manual curation of variants and
phenotypes included in the algorithm

« One such example was phenylketonuria (PKU)
where our method included both mild and
classical PKU

* These results suggest that although a default
run can provide reliable estimates for some
diseases (58%), manual curation of the input
data is critical

Current method (incidence, USA)

1073

1074 4

105 4

1076 4§

1077 4

-- expectation

consitent/lower estimate
higher estimate

T
10™

10-% 1074
Newborn screen (birth incidence CDC, USA)
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4.2.1 Background on Recessive Epidermolysis Bullosa (RDEB)

» Dystrophic epidermolysis bullosa (DEB) is a rare genodermatosis due to mutations in the
COL7A1 gene encoding the alpha-chain of collagen 7 (C7). C7 deficiency results in
dermalepidermal junction separation with severe, painful blistering and scarring. Both
dominant (DDEB) and recessive (RDEB) forms occur with RDEB being typically more severe.

« Multiple subtypes of RDEB exists that may be treated using a protein replacement therapy:

* Generalized, severe RDEB is the most severe form of RDEB
« Other RDEB, which includes
* |ntermediate-form RDEB, RDEB inversa, RDEB pruriginosa, Localized RDEB,
Acral RDEB, Nails only RDEB, Pretibial RDEB, Self-improving RDEB
« Epidemiology estimates, from Fine et al. (2016):
* Prevalence:
 RDEB, generalized severe: 0.36 / 1M people (26%)
+ RDEB, other: 0.99/ 1 M people (73%)
* Incidence:
 RDEB, generalized severe: 0.57 / 1M births (18.7%)
+ RDEB, other: 2.48 / 1M births (81.3%)

+ We tested the incidence estimation algorithm to triangulate potential treatable population of a

protein replacement therapy.

bﬂJge
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https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=11434
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=11907
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=11435
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=11908
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=29740
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=17233
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=17234
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=11436
https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=11437
https://jamanetwork.com/journals/jamadermatology/fullarticle/2537024

4.2.2 Phenotype curation for RDEB

Manual curation of phenotypes in ClinVar and HGMD was conducted to

select only the most relevant ones. This was an iterative efforts with

multiple feedback from clinical scientists and experts in RDEB.

selected_phenotypes = [

"Abnormal blistering of the skin",

"Bullous lesions",

"Dominant dystrophic epidermolysis bullosa with absence of skin",
"Dystrophic epidermolysis bullosa",

"Epidermolysis Bullosa Distrophica Autosomal Recessive (RDEB)",
"Epidermolysis bullosa",

"Epidermolysis bullosa dystrophica",

"Epidermolysis bullosa dystrophica inversa, autosomal recessive",
"Epidermolysis bullosa dystrophica with amniotic band syndrome",
"Epidermolysis bullosa dystrophica, Pasini type",

"Epidermolysis bullosa dystrophica, autosomal recessive, localisata variant",
"Epidermolysis bullosa dystrophica, intermediate”,

"Epidermolysis bullosa dystrophica, inversus type",
"Epidermolysis bullosa dystrophica, nails only",

"Epidermolysis bullosa dystrophica, pretibial",

"Epidermolysis bullosa dystrophica, recessive",

"Epidermolysis bullosa dystrophica, recessive, intermediate”,
"Epidermolysis bullosa dystrophica, recessive, localised",
"Epidermolysis bullosa dystrophica, recessive, pruriginosa",
"Epidermolysis bullosa dystrophica, recessive, self-improving",
“Epidermolysis bullosa pruriginosa",

"Epidermolysis bullosa pruriginosa, autosomal dominant",
"Epidermolysis bullosa pruriginosa, autosomal recessive",
"Epidermolysis bullosa, pretibial, autosomal recessive",
"Generalized dominant dystrophic epidermolysis bullosa",
"Recessive dystrophic epidermolysis bullosa",

22
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4.2.3 RDEB birth incidence estimate

« Only "Pathogenic" or "Likely Pathogenic” variants in all databases considered were included in the
calculation

» plLoF variants were included in the "liberal” estimates when computing the higher bound of the
interval range

 Results

obulation new annual new annual new annual
pop cases (low) cases (base) cases (high)
Europe 13.8 23.25 36.2
USA 10.6 20.4 36.5

obulation incidence rate incidence rate incidence rate
pop (low) (base) (high)
Europe 3.26e-06 5.48e-06 8.53e-06
USA 2.79e-06 5.38e-06 9.63e-06

* Conclusion: Overall, the estimate is higher than literature estimate (0.57 + 2.48) / 1M = 3.05/ 1M,
but the 95%-credible interval [2.79, 9.63] / 1M contains the literature estimate.

bﬂJge
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https://jamanetwork.com/journals/jamadermatology/fullarticle/2537024

4.2.4 RDEB overall and pediatric prevalence estimates

Total number of pediatric patients

Eichstadt et al. (2019), Table 2. Interpolated for each year. Life ¢ Life'expeCtanCy times incidence rate ylelds

eXFI)R’e[c):ESC(};/: ed S 70 the total number of patients. Multiplied by
. eneralized Severe: 37.0 years . . . .

- RDEB Other: 55.7 years the.pedlatrlc fraction yields the number of
« RDEB (GS + Other, weighted average, with weights 18.7%, patients under 19.

81.3%): 52.2 years

1.0 4

0.8 A

o
o

Survival fraction
o
Fey

0.2 4

0.0 4

RDEB (in US)

RDEB mortality (Eichstadt et al. (2019))
RDEB
base [low, high]
Incidence (per million births) 5.38 [2.79, 9.63]
Newborns per year 20.4 [10.6, 36.5]
Prevalence (per million) 3.6 [1.8, 6.4]
Patients 1065 [553, 1905]
Patients (age <= 18 years) 383 [200, 685]
—e— Generalized, severe
—— Other
e Generalized, SeVErE erage) Validation against data from US claims:
: 5 " - - - o « RDEB + DDEB US patients: 1554 [1042,
age (years) 2394] (Prognos: 1214)
interpolated for every year - RDEB + DDEB US patients under 19 years

24
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Discussion

Key assumptions of the model

» Well-defined genetic cause

» Population of each ethnicity is
well-mixed

» Pathogenic variants are
inherited

 Carriers are found in general
population
with high enough frequency (>
1 in 200,000)

« HET genotype have little effect

« Pathogenic variants have high
penetrance

Limitations of the model

 Variants with incomplete, low
penetrance

* Modifiers

» Polygenic or environmental
effects

 AD and X-linked diseases
* De-novo mutations

» Consanguinity

* Founder effects

26
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