A phase II study of infigratinib (BGJ398), an FGFR-selective tyrosine kinase inhibitor (TKI), in patients with previously-treated advanced cholangiocarcinoma containing FGFR2 fusions

Javle M,¹ Kelley RK,² Roychowdhury S,³ Weiss K-H,⁴ Abou-Alfa GK,⁵ Macarulla T,⁶ Sadeghi S,⁻ Waldschmidt D,Ց Zhu A,⁶ Goyal L,⁶ Borad M,¹⁰ Yong WP,¹¹ Borbath I,¹² El-Khoueiry A,¹³ Philip P,¹⁴ Moran S,¹⁵ Ye Y,¹⁵ Ising M,¹⁶ Lewis N,¹⁶ Bekaii-Saab T¹⁰

¹MD Anderson Cancer Center, Houston, TX, USA; ²University of California, San Francisco, CA, USA; ³Ohio State Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA; ⁴University Hospital Heidelberg, Germany; ⁵Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁴Hospital Yellorina, San Francisco, CA, USA; ³Ohio State Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA; ⁴Hospital Heidelberg, Germany; ⁵Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁴Hospital Yellorina, San Francisco, CA, USA; ⁴Naysachusetts General Hospital, Boston, MA, USA; ¹Óhio State Comprehensive Cancer Hospital, Columbus, OH, USA; ¹Óhio State Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA; ¹Óhio State Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA; ¹Óhio State Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA; ¹Óhio State Comprehensive Cancer Center/James Cancer Hospital, Columbus, OH, USA; ¹Óhio State Comprehensive Cancer Center/James Cancer Center/James Cancer Hospital, Columbus, OH, USA; ¹Óhio State Comprehensive Cancer Center/James Cancer Center/

Background

- Cholangiocarcinomas are often diagnosed at an advanced unresectable stage, with few treatment options available after disease progression while receiving gemcitabine and cisplatin first-line chemotherapy, resulting in poor patient prognosis.
- Numerous cancers have fibroblast growth factor receptor (FGFR) genomic alterations. FGFR translocations (i.e. fusion events) represent driver mutations in cholangiocarcinoma. They are present in 13-17% of intrahepatic cholangiocarcinomas (IHC) and may predict tumor sensitivity to FGFR inhibitors. 1-3
- Infigratinib (BGJ398), an ATP-competitive FGFR1-3-selective oral tyrosine kinase inhibitor (Figure 1), has shown preliminary clinical activity against tumors with FGFR alterations.4
- In early-phase clinical evaluation, infigratinib showed a manageable safety profile and single-agent activity.5,6
- A multicenter, open-label, phase II study (NCT02150967) evaluated the antitumor activity of infigratinib in patients with previously-treated advanced IHC containing FGFR2 fusions.

Figure 1. Infigratinib: an oral FGFR1-3 selective kinase inhibitor

Study methods

- Histologically or cytologically confirmed advanced/metastatic IHC with FGFR2 fusions or other FGFR genetic alterations identified by local a central facility.
- The protocol was modified to limit enrollment to only tumors with
- Measurable or evaluable disease according to RECIST (version 1.1). an ECOG performance status of 0 or 1, and evidence of disease combination therapy or gemcitabine monotherapy.

Treatment

- Patients received infigratinib 125 mg once daily for 21 days followed by 7 days off in 28-day cycles.
- To manage hyperphosphatemia, prophylactic use of sevelamer, a phosphate-binding agent, was recommended on days of infigratinib administration per the product packaging information and institutional guidelines. Patients were also instructed to adhere to a low-phosphate diet.
- Patients continued infigratinib treatment until unacceptable toxicity, disease progression, and/or investigator discretion, or consent withdrawal.
- Dose modifications were based on the worst preceding toxicity. Treatment was resumed after resolution or reduction to grade 1 toxicity, with each patient allowed two dose reductions (100 mg, 75 mg) before infigration discontinuation.

Outcomes

- Tumor response was assessed per RECIST version 1.1, using
- Primary and secondary efficacy endpoints see Figure 2.
- Adverse events (AEs) were assessed according to the Common Terminology Criteria for Adverse Events, version 4.03, during treatment and until 30 days after the last dose was administered.
- FGFR genetic alteration was required to confirm patient eligibility. These and other concurrent genetic alterations were correlated with clinical outcome.

Statistics

- Data were combined from all participating study sites for the analyses.
- Efficacy and safety analyses included all patients whose tumors had FGFR2 fusions and received at least one infigratinib dose.

Table 1. Baseline patient demographics and clinical characteristics

Characteristic	N=71	
Median age, years (range)	53 (28–74)	
Male / female	27 (38.0) / 44 (62.0)	
Race		
White	55 (77.5)	
Black	3 (4.2)	
Asian	4 (5.6)	
Other / unknown	3 (4.2) / 6 (8.5)	
ECOG performance status		
0/1	29 (40.8) / 42 (59.2)	
Prior lines of therapy		
≤1	32 (45.1)	
≥2	39 (54.9)	
FGFR2 status		
Translocation positive	71 (100.0)	
Mutated	5 (7.0)	

Figure 2. Open-label, phase II study design

Table 2. Patient disposition

Efficacy outcome in all fusion patient

Median OS, months (95% CI)

Total receiving treatment	71 (100.0)
Treatment ongoing	9 (12.7)
Ended treatment	62 (87.3)
Missing	1 (1.4)
Adverse event	6 (8.5)
Death	1 (1.4)
Lost to follow-up	1 (1.4)
Physician decision	5 (7.0)
Progressive disease	44 (62.0)
Subject/guardian decision	4 (5.6)

Table 3. Clinical activity of infigratinib in advanced cholangiocarcinoma

Overall response rate (ORR; confirmed & unconfirmed), % (95% CI)	31.0 (20.5–43.1)
Complete response, n (%)	0
Partial response – confirmed, n (%)	18 (25.4)
Stable disease, n (%)	41 (57.7)
Progressive disease, n (%)	8 (11.3)
Unknown, n (%)	4 (5.6)
Efficacy outcome in patients with potential for confirmation*	
cORR, % (95% CI)	26.9 (16.8-39.1)
cORR in patients receiving prior lines of treatment, %	
≤1 (n=28)	39.3
≥2 (n=39)	17.9
Disease control rate (DCR), % (95% CI)	83.6 (72.5-91.5)
Median duration of response, months (95% CI)	5.4 (3.7-7.4)
Median PFS, months (95% CI)	6.8 (5.3-7.6)

*Patients completed (or discontinued prior to) 6 cycles. Investigator-assessed.

Figure 3, Efficacy of infigratinib in FGFR2 fusion-positive cholangiocarcinoma

Figure 4. Tumor response with treatment exposure

Table 4. Infigratinib safety profile: any grade AEs ≥20%

Number of patients (%)	Any grade	Grade 3/4
Hyperphosphatemia	52 (73.2)	9 (12.7)
Fatigue	35 (49.3)	3 (4.2)
Stomatitis	32 (45.1)	7 (9.9)
Alopecia	27 (38.0)	0
Constipation	25 (35.2)	1 (1.4)
Dry eye	23 (32.4)	0
Dysgeusia	23 (32.4)	0
Arthralgia	21 (29.6)	1 (1.4)
Palmar-plantar erythrodysesthesia syndrome	19 (26.8)	4 (5.6)
Dry mouth	18 (25.4)	0
Dry skin	18 (25.4)	0
Diarrhea	17 (23.9)	2 (2.8)
Hypophosphatemia	17 (23.9)	10 (14.1)
Nausea	17 (23.9)	1 (1.4)
Vomiting	17 (23.9)	1 (1.4)
Hypercalcemia	16 (22.5)	3 (4.2)
Vision blurred	16 (22.5)	0
Decreased appetite	15 (21.1)	1 (1.4)
Weight decreased	15 (21.1)	2 (2.8)

Table 5. Infigratinib safety profile: grade 3/4 AEs >3%

Number of patients (%)	Grade 3/4	
Hypophosphatemia	10 (14.1)	
Hyperphosphatemia	9 (12.7)	
Hyponatremia	8 (11.3)	
Stomatitis	7 (9.9)	
Lipase increased	4 (5.6)	
Palmar-plantar erythrodysesthesia syndrome	4 (5.6)	
Abdominal pain	3 (4.2)	
Anemia	3 (4.2)	
Blood alkaline phosphatase increased	3 (4.2)	
Fatigue	3 (4.2)	
Hypercalcemia	3 (4.2)	

Conclusions

- Infigratinib is an oral, FGFR1—3-selective TKI that shows meaningful clinical activity against chemotherapy-refractory cholangiocarcinoma containing FGFR2 fusions.
- Infigratinib-associated toxicity is manageable with phosphate binders and routine supportive care.
- This promising antitumor activity and manageable safety profile supports continued development of infigratinib in this highly selected patient population

Acknowledgements

The authors would like to acknowledge the following:

- CBGJ398X2204 study investigators and participating patients. ■ Jeff Cai for programming and Ai Li for review of content (QED) Therapeutics).
- Lee Miller (Miller Medical Communications) for provision of medical writing support for this poster. This work was funded by QED Therapeutics.

References

- Graham RP, et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum Pathol 2014;45:16:30—8
- Ross JS, et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist 2014;19:235-42.
 - Farshidfar F, et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles Cell Rep. 2017;18:2780–94
 - Guagnano V, et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor Capper Discove 2012:2:1118–33.
 - Nogova L, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: Results of a global phase I dose-escalation and dose-expansion study. J Clin Oncol 2017;35:157–65.
 - Javle MM, et al. A phase 2 study of BGJ398 in patients (pts) with advanced or metastatic FGFR-altered cholangiocarcinoma (CCA) who failed or are intolerant to platinum-based chemotherapy. J Clin Oncol 2016;34(suppl
 - . Heisten et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res 2016:22:259-67

Patients

- Clinical Laboratory Improvement Amendments certified testing or at
- FGFR2 fusions.
- progression after one or more prior regimens of gemcitabine-based

Response to infigratinib in FGFR2 fusion-positive cholangiocarcinoma

12.5 (9.9-16.6)

s/p right hepatectomy, systemic chemotherapy with gemcitabine and cisplatin and pembrolizumab

Partial response on infigratinib noted at first restaging in multiple liver metastases.

■ Molecular profile: FGFR2 rearrangement, PTCH1, ARID1A BCORL 1, MAP2K4, MLL3, NUP93, SPEN, TP53, MSI high and TMB-high.

