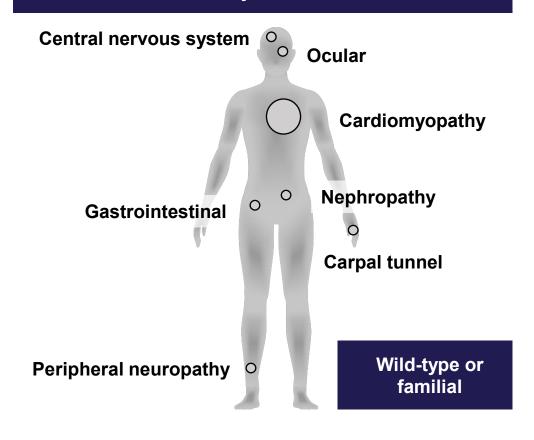


ISA 2022

Long-term safety and tolerability of acoramidis (AG10) in symptomatic transthyretin amyloid cardiomyopathy: Updated analysis from an ongoing phase 2 open-label extension study

Masri, Ahmad¹, Aras, Mandar², Falk, Rodney H.³, Grogan, Martha⁴, Jacoby, Daniel⁵, Judge, Daniel P. ⁶, Shah, Sanjiv J.⁷, Witteles, Ronald⁸, Ji, Alan X.⁹, Wong, Paul W.⁹, Cao, Xiaofan⁹, Vanlandingham, Rebecca⁹, Katz, Leonid⁹, Sinha, Uma⁹, Fox, Jonathan C. ⁹, Maurer, Mathew S.¹⁰

¹Oregon Health Sciences University, Portland, OR, US ²University of California at San Francisco, San Francisco, CA, US ³Brigham and Women's Hospital, Boston, MA, US ⁴Mayo Clinic Rochester, MN, US ⁵Yale University Medical Center, New Haven, CT, ⁶Medical University of South Carolina, Charleston, SC, US ⁷Northwestern University Feinberg School of Medicine, Chicago, IL, US ⁸Stanford University, San Francisco, CA, US ⁹Eidos Therapeutics, Inc., San Francisco, CA, US, ¹⁰Columbia University Medical Center, New York, NY, US


Presented by Dr. Ahmad Masri on behalf of investigators

Disclosures

- Research Grants from: Pfizer, Akcea, Ionis, Ultromics, and the Wheeler Foundation.
- Consulting fees and/or honoraria from: Eidos, Pfizer, Ionis, BMS, Attralus, Tenaya, Alnylam and Cytokinetics.
- ENCORE abstract presentation. Data first presented at ACC 2022.
- The presentation includes several slides on the phase 2 and phase 3 program of acoramidis which were provided by Eidos/BridgeBio.
- Acoramidis is an investigational agent that is not approved for use by any regulatory agency as efficacy and safety have not been established.

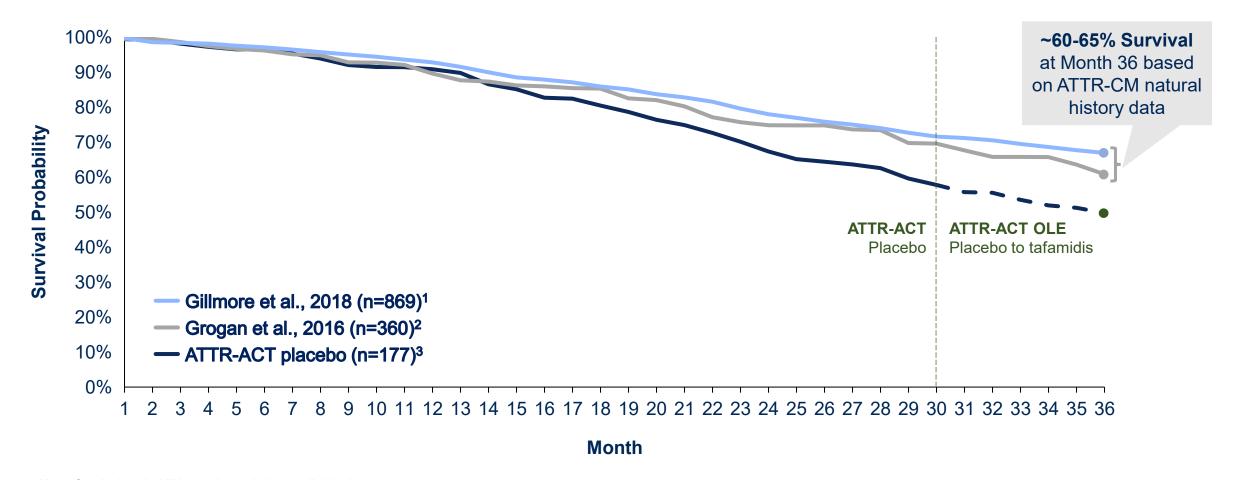
Transthyretin (TTR) amyloidosis cardiomyopathy (ATTR-CM) is an emerging diagnostic and treatment priority

ATTR is a systemic disease

Growing awareness of undiagnosed ATTR:

10-13% of heart failure with preserved ejection fraction^{1,2,3}

7% of idiopathic bilateral carpal tunnel release4

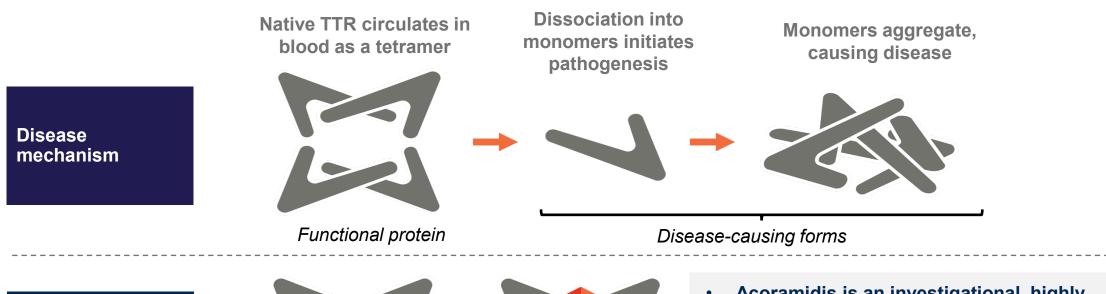

5% of suspected hypertrophic cardiomyopathy5*

ATTR pathogenesis and therapeutic strategies:

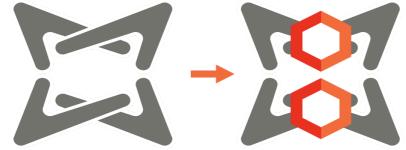
- Instability of the TTR tetramer promotes dissociation and aggregation as amyloid plaques⁶
- Available therapies include TTR tetramer stabilizers, TTR knockdown agents (neuropathy only), and transplant
- Stabilizing mutation (T119M) protects against ATTR and was the basis for development of acoramidis⁷

^{*}Mutant TTR only

ATTR-CM is a rapidly progressive and fatal disease

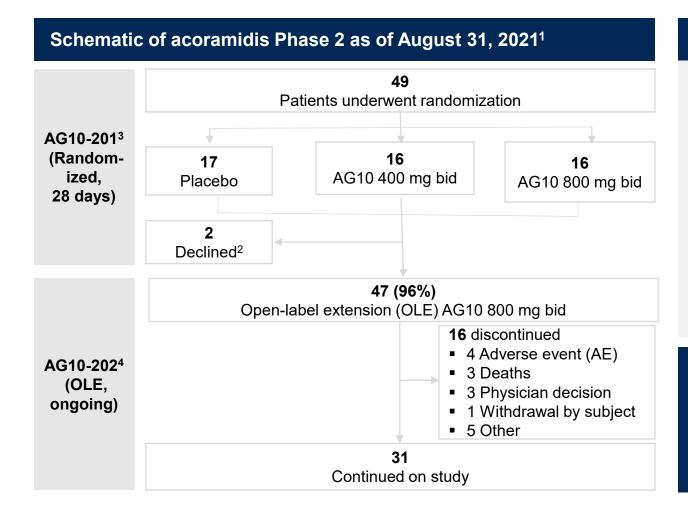

Note: Survival probabilities estimated via plot digitization.

^{1.} Gillmore JD et al. *Eur Heart J*. 2018;39(30):2799-2806 2. Grogan M. et al., *JACC* 2016; 68:1014–1020 3. Elliott P. et al, *Circulation: Heart Failure* 2022; 15(01):e008193


¹Survival data digitized using NT-proBNP subgroups plots (>3,000 pg/mL or ≤3,000 pg/mL). Blended survival curve forecasted based on the patient distribution across NT-proBNP strata at baseline.

²Grogan cohort includes wildtype ATTR-CM only.

Acoramidis was designed to mimic a naturally occurring TTR variant that protects carriers from ATTR development



Therapeutic hypothesis

- Acoramidis is an investigational, highly selective, and potent stabilizer of TTR that was designed to mimic the T119M rescue mutation^{1,2}
- Acoramidis has the potential to become a disease-modifying treatment for patients with either ATTRv or ATTRwt

Acoramidis Phase 2 design

Patient selection and objectives

Selected inclusion criteria

- Established diagnosis of ATTR-CM
- NYHA class II or III symptoms
- ≥1 prior hospitalization for heart failure or clinical evidence of heart failure

Primary and secondary objectives

- Safety and tolerability
- Pharmacokinetics
- Pharmacodynamics
- Consort diagram reflects status of participants as of August 31, 2021 or study discontinuation
- Overall, AEs with an outcome of death, cardiac transplant or transition to hospice were reported for 11 participants

¹Median 38 months from initial Phase 2 randomization. Median 35 months on open-label acoramidis

²Both declined participation due to geographical constraints regarding study visits.

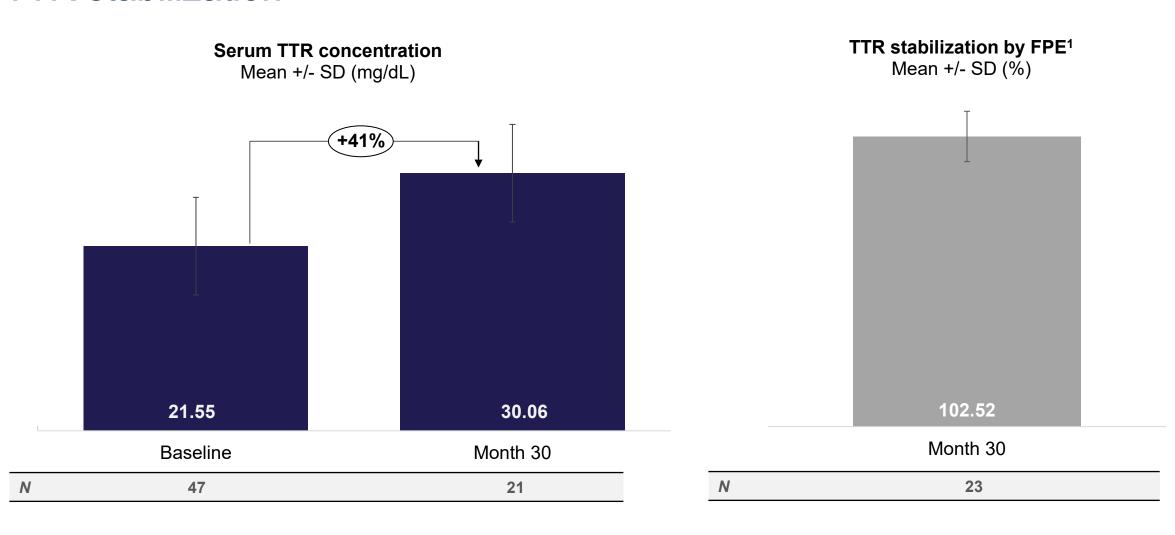
³Clinicaltrials.gov identifier: NCT03458130

⁴Clinicaltrials.gov identifier: NCT03536767

No safety signals of clinical concern identified in Phase 2 OLE

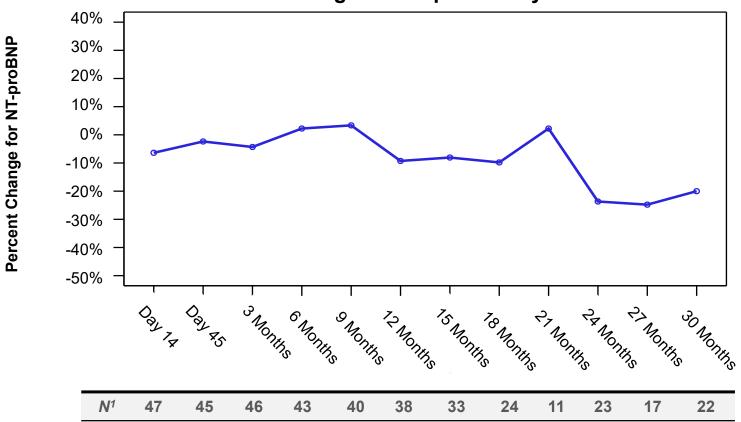
Summary of treatment-emergent adverse events

Number of participants (%)


Any treatment-emergent adverse event	47 (100)
Most common adverse events (≥ 9)	
Fall	21 (44.7)
Acute kidney injury	12 (25.5)
Cardiac failure congestive	10 (21.3)
Arthralgia	9 (19.1)
Cardiac failure acute	9 (19.1)
Constipation	9 (19.1)
Dyspnea	9 (19.1)
Fatigue	9 (19.1)

Summary of serious treatment-emergent adverse events Number of participants (%)

· · · · · · · · · · · · · · · · · · ·	
Any serious treatment-emergent adverse event	31 (66.0)
Most common serious adverse events (≥ 4)	
Cardiac failure acute	9 (19.1)
Acute kidney injury	7 (14.9)
Cardiac failure congestive	5 (10.6)
Fall	5 (10.6)
Cardiac failure	4 (8.5)
Cardiogenic shock	4 (8.5)
Cardiorenal syndrome	4 (8.5)


Acoramidis was generally well tolerated with a pattern of adverse events consistent with underlying disease, progression of disease, concurrent illnesses, and age of participants

Acoramidis increased serum TTR levels and provided near-complete TTR stabilization

Median NT-proBNP was stable or improving at all time points beyond Month 12

- At Month 30, median change from baseline was -437 pg/mL [-950, 316]
- At Month 30, 15/22 (68%) participants had NT-proBNP levels below their baseline¹

Note: Based on Study AG10-202 data cut on Aug. 31, 2021. Baseline defined as the date of the first dose of acoramidis.

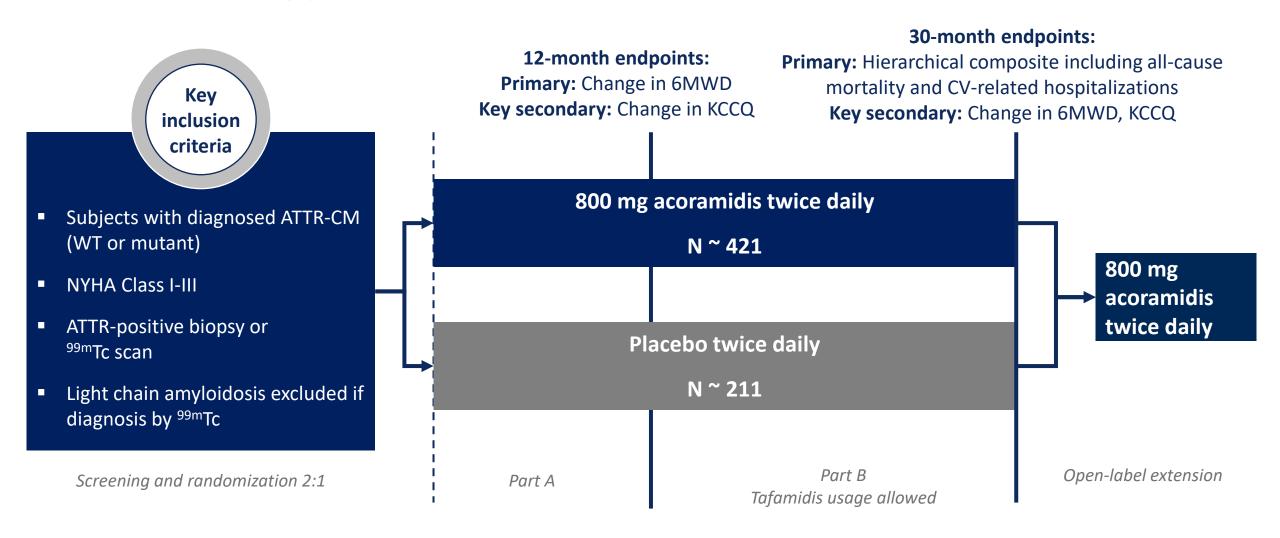
NT-proBNP was a reported laboratory parameter, not a pre-specified safety endpoint.

¹Represents all evaluable data from participants who continued in the study

Summary of acoramidis Phase 2 OLE results

Safety and tolerability

- Adverse event profile consistent with baseline disease severity and progression
- No signals of concern observed with median participation of 38 months

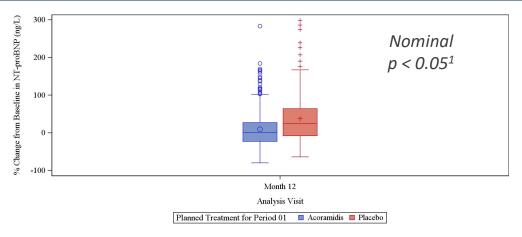

2

Cardiac biomarkers

- Sustained stabilization of TTR demonstrated by increased serum concentrations and ex vivo assays
- Median NT-proBNP was stable or declining at all time points beyond Month 12

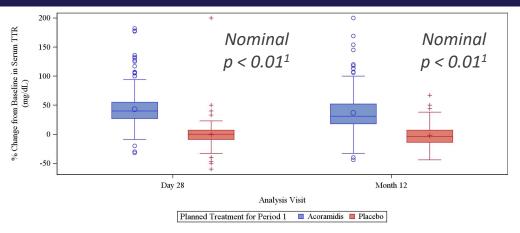
Phase 2 OLE data and ongoing participation through 3 years support further development of acoramidis in ATTR-CM; evaluation in a Phase 3 trial is ongoing (ATTRibute-CM)

ATTRibute-CM Phase 3 design includes primary endpoints at Month 12 and Month 30



Summary of Month 12 results

Based on data available at Month 12, acoramidis demonstrated relative to placebo:


- No improvement in 6MWD
- ✓ Improvement in KCCQ (nominal p < 0.05)
- ✓ Improvement in NT-proBNP (nominal p < 0.05)
- ✓ Increased serum TTR levels (nominal p < 0.01)
- ✓ No safety signals of clinical concern

Percent change from baseline in NT-proBNP ²

Note: to facilitate a focused review of the vast majority of the data, outliers greater than 300% change from baseline are not included in this plot.

Percent change from baseline in serum TTR²

Note: to facilitate a focused review of the vast majority of the data, outliers greater than 200% change from baseline are not included in this plot.

¹Inference analysis (p-value) based on absolute change from baseline between groups

² Modified intent-to-treat (mITT) population defined as all randomized subjects who have received at least one dose of IMP and have at least one post baseline efficacy evaluation. mITT population pre-specified to exclude subjects with baseline eGFR < 30 mL/min/1.73 m²

Acknowledgements

A sincere thank-you to the patients and families, investigators, referring physicians, clinical research staff, Eidos employees, and collaborating research partners participating in the study.

Mandar Aras, MD	Rodney Falk, MD
University of California San Francisco	Brigham and Women's Hospital
Daniel Jacoby, MD	Daniel Judge, MD
Yale University	Medical University of South Carolina
Martha Grogan, MD	Ahmad Masri, MD
Mayo Clinic Rochester, Minneapolis	Oregon Health & Science University
Mat Maurer, MD	Sanjiv Shah, MD
Columbia University	Northwestern University
Ronald Witteles, MD	
Stanford University	